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Abstract
The United States Department of Agriculture has recently

released reports that show samples from 2022-2024 of highly
pathogenic avian influenza (H5N1) have been detected in mam-
mals and birds (1). To date, the United States Centers for Dis-
ease Control reports that there have been 27 humans infected
with H5N1 in 2024 (2). The broader potential impact on hu-
man health remains unclear. In this study, we computationally
model 1,804 protein complexes consisting of various H5 isolates
from 1959 to 2024 against 11 hemagglutinin domain 1 (HA1)-
neutralizing antibodies. This study shows a trend of weakening
binding affinity of existing antibodies against H5 isolates over
time, indicating that the H5N1 virus is evolving immune escape
of our medical defenses. We also found that based on the wide
variety of host species and geographic locations in which H5N1
was observed to have been transmitted from birds to mammals,
there is not a single central reservoir host species or location
associated with H5N1’s spread. These results indicate that the
virus has potential to move from epidemic to pandemic status
in the near future. This study illustrates the value of high-
performance computing to rapidly model protein-protein inter-
actions and viral genomic sequence data at-scale for functional
insights into medical preparedness.
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Research in Context
Evidence before this study. Previous studies have shown
cases of avian influenza transmissions to mammals that are
increasing in frequency, which is of concern to human health.
Since 1997, nearly a thousand H5N1 cases have been re-
ported in humans with a 52% fatality rate. Previous analy-
ses have indicated specific mutations on the hemagglutinin
protein that allow for this “host jumping" between birds and
mammals (3). There are also existing evidence of recent viral
strains with reduced neutralization to sera (4).

Added value of this study. This study provides a com-
prehensive look at the mutational space of hemagglutinin of
H5N1 influenza and presents computational predictions of
the binding between various HA1-neutralizing antibodies de-
rived from infected vaccinated patients and humanized mice
and 1,804 representative H5 HA1 proteins. These analyses
show a weakening trend of existing antibodies. We also con-
firm that the mutations found in other studies that enable
zoonosis also affect binding affinities of the antibodies tested.

Furthermore, through phylogenetic analyses, we quan-
tify the avian-to-mammalian transmissions from 1959 to
2024 and show a persistent circulation of isolates between
North America and Europe.

Taken together, the continuous transmission of H5N1
from birds to mammals and the increase in immuno-evasive
HA strains in mammals sampled over time suggest that anti-
genic drift is a source of spillover risk.

Implications of all the available evidence. Our findings
indicate that the worsening in antibody binding, along with
the increase in of avian-to-mammalian H5N1 influenza trans-
missions are risks to public health.

Through the findings of previous studies along with the
predictions reported in this study, we can now monitor spe-
cific mutations of interest, quantified by their potential impact
on antibody evasion, and inform public health monitoring of
circulating isolates in 2024 and beyond.

In addition, these findings may help to guide future vac-
cine and therapeutic development in the fight against H5N1
influenza infections in humans.
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Introduction
Wild aquatic birds (e.g., order Anseriformes) are fun-

damental hosts of influenza viruses, which are transmitted
from domestic birds (e.g., Galliformes) and mammals (or-
ders Artiodactyla, Carnivora, and Primates) (5, 6). H5N1
has circulated in nature since 1959, following an outbreak
in Scotland in chickens (7). In 1996, H5N1 influenza largely
occurred in Anseriformes and spread to humans and chick-
ens in Hong Kong in 1997 (6, 8). As a response to H5N1
in chickens and occasional human infection, chickens were
culled in Hong Kong in the period 1997 to 2011 (9). In 2002,
the most common hosts of H5N1 were Anseriformes with
occasional transmission to Galliformes and humans through-
out China and South East Asia (6, 10). Since 2003, various
lineages of H5N1 have spread throughout China and Hong
Kong, South East Asia, Russia, North Africa, the West Bank,
Gaza Strip and Israel, Pakistan, Bangladesh, India, Bhutan,
Nepal, Europe, Japan and South Korea, using a wide variety
of hosts (11, 12). Many avian taxa (Charadriiformes, Ac-
cipitriformes, Corvidae, Ardeidae, Columbidae, and Passeri-
formes) as well as primate, carnivore, artiodactyl, and arthro-
pod hosts have been infected with H5N1 (6). H5N1 infec-
tions in humans have been reported by the World Health
Organization (WHO) in: Hong Kong 1997–2003, in China
and Hong Kong 2003–2014; in Thailand 2003–2007; in In-
donesia 2005–2012; in Nigeria in 2007; in Bangladesh 2011-
2013; in Azerbaijan, Turkey, Iraq, Myanmar, Pakistan, and
Djibouti in 2006-2007; in Egypt 2003-2014; in Lao PDR
2007; in Vietnam 2003–2014; in Cambodia 2003–2014, and
in Canada in 2014. The document produced by the WHO has
not been updated since (13).

However, a comprehensive review from 2023 (14) il-
lustrates the recent (2022-23) spread (on top of the previous
spread) of H5N1 in animals as follows:

• Asia: Bhutan, Hong Kong, India, Japan, Korea, Nepal, Philippines,
Taiwan, and Vietnam.

• Europe: Albania, Austria, Belgium, Bosnia and Herzegovina, Bul-
garia, Croatia, Czechia, Denmark, Estonia, Finland, France, Ger-
many, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Moldova, Montenegro, Netherlands, North Macedo-
nia, Norway, Poland, Portugal, Romania, Russia, Serbia, Slovakia,
Slovenia, Spain, Sweden, Switzerland, and the United Kingdom.

• The Middle East: Israel and Turkey.
• Africa: Algeria, Gambia, Nigeria, Reunion, Senegal, and South

Africa.
• North and South America: Bolivia, Brazil, Canada, Bolivia, Chile,

Colombia, Ecuador, Guatemala, Honduras, Mexico, Panama, Peru,
Venezuela, and the United States.

In 2024, H5N1 has been found in animals in Antarc-
tica (15). Also, in March 2024, an outbreak of H5N1 was
reported among several herds of U.S. dairy cattle. H5N1 also
caused fatal infections among cats, infection in poultry, and
four reported infections in dairy workers (16–18). From 1997
to late April 2024, 909 human H5N1 cases were reported,
with 52% of cases being fatal (19).

Continued transmission of avian strains of H5N1 to
livestock and humans may lead to subsequent human-to-
human transmission which can devastate public health world-

wide. As the human-animal interface increases due to shrink-
ing natural habitats, deforestation, and increased demand for
animal products; animal-human disease transmission is be-
coming more common (20).

Current human seasonal influenza vaccines do not con-
fer immunity against H5N1 influenza or other animal in-
fluenza A viruses (21). Moreover, recent studies have shown
there is little existing immunity to H5N1 in the USA (22).
Such immunity may exist elsewhere in the world and in pop-
ulations in due to previous infection or immunization.

Thus, it is of great public health interest to discover
rapidly develop molecular insight into the effects of muta-
tions of H5N1 on existing human immunity (23). In this
study, we present the results of a large computational corpus
of molecular docking experiments between various H5 iso-
lates against existing HA1-neutralizing antibodies and show
changes over time.

Methods

This study closely follows the published methods in
Tomezsko and Ford et al. (2024) and other protein model-
ing studies by this team (25–29). The specific workflow for
this study is depicted in Figure 1.

HA1 Sequence Collection. 18,693 influenza A H5 se-
quences were downloaded from the GISAID EpiFlu database
(30, 31) on June 17, 2024. Isolate metadata, including: date
of viral isolation, country of origin, and host information,
were also collected. We then derived taxonomic classifica-
tions from the provided host metadata along with continent
of origin from the country information.

These amino acid sequences were clustered using CD-
HIT v4.8.1 (32, 33). Ranging in size from 11 to 576 amino
acids, the process resulted in 250 clusters, based on 97%
identity. A representative sequence from each of these clus-
ters was selected, which was then output in a FASTA file.

These representative sequences were then aligned to
each other with MUSCLE v3.8.425 (34) using default set-
tings. Then, sequences that were of low quality, incomplete,
or did not contain the desired hemagglutinin domain 1 (HA1)
region were removed. This resulted in 164 amino acid se-
quences that were used in the subsequent steps. These se-
quences were trimmed to the HA1 receptor binding domain
(approximately residues 111-269, depending on the presence
of indels) (35).

Also, clusters consisting of only lab derived isolates
(n = 3) were analyzed, but have been left out of the reported
statistics and visualizations.

Structure Prediction. Structures for each of the 164 HA1
sequences were predicted using ColabFold v1.5.5 (36), a pro-
tein folding framework that uses AlphaFold2 (37) acceler-
ated with MMseqs2 (38), with default settings. The side
chains of these predicted structures were relaxed using the
OpenMM/Amber method (39). The .PDB file output of the
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Fig. 1. Workflow diagram of the data procurement, data preparation, and analysis steps.

top structure (i.e., the one with the highest pLDDT1 confi-
dence) was selected and used for subsequent analyses.

Neutralizing Antibody Collection. Existing structures for
11 HA1-neutralizing antibodies were collected by a database
search through Thera-SAbDab (40) and the Protein Data
Bank (41). Each of these 11 antibody structures have an epi-
tope on the target HA1 domain of the hemagglutinin protein,
though not all share the same epitope. These antibodies and
their respective PDB IDs are listed in Table 1.

Antibody ID PDB ID Year
(Reference) Clade H/L Chain

Subgroups
Source Information

100F4 5dur 2015
(42)

2.3.4.4 II/I Human Memory B-Cell, Re-
covered from H5N1 Infec-
tion

12H5 7fah 2022
(43)

2.3.4.4 I/IV Mouse, Immunized with
three H1N1 strains, Human-
ized

13D4 6a0z 2018
(44)

2.3.2.1c I/I Mouse, Immunized with five
H5N1 strains, Humanized

3C11 6iuv 2019
(45)

2.3.4.4 I/II Human Memory B-cell, In-
fected by H5N1 viruses

65C6 5dum 2015
(42)

2.3.4.4 I/III Human, Infected by H5N1
viruses

AVFluIgG01 6iut 2019
(45)

2.3.4.4 II/I Human, Infected by H5N1
viruses

AVFluIgG03 5dup 2015
(42)

2.3.4.4 III/I Human, Infected by H5N1
viruses

FLD194 5a3i 2015
(46)

2.3.4.4 II/I Human Memory B-cell, Re-
covered from H5N1 infec-
tion

FLD21.140 6a67 2018
(47)

2.3.4.4 ?/I Human, Recovered from
H5N1 Infection

H5M9 4mhh 2013
(48)

2.3.2.1 I/IV Mouse, Immunized with
H5N1, Humanized

H5.3 4xrc 2015
(49)

2.3.4.4 II/? Human, Immunized with
one H5N1 strain

Table 1. HA1-neutralizing antibodies.

Docking Analyses. Using HADDOCK3, a computational
framework for the integrative modeling of biomolecular com-
plexes (50), each antibody was docked to each antigen across
the dataset. Given the 11 antibody structures and 164 HA1

1Predicted local distance difference test (pLDDT): An estimate of local
confidence, scaled from [0, 100], where higher scores indicate higher confi-
dence in the protein conformation.

structures, this resulted in 1,804 docking experiments to be
performed.

Experiment Generation. HADDOCK3 inputs for each exper-
iment were generated programmatically, defining the anti-
body and antigen .PDB file inputs on which to dock. Other
experiment files were also copied or created programmati-
cally including the scripts to run the docking process and to
generate other configuration files.

HADDOCK3 requires the definition of active and inac-
tive residue restraints (AIRs) to help guide the protein dock-
ing process. To avoid biasing the docking placement of the
antibody on the HA1 antigens, a random subset of surface
residues were selected as “active" and were then included in
the AIR file on which to dock. For the antibody structures,
residues in the CDR loops were detected using ANARCI
(51), a Python package for numbering antibody sequences.

Lastly, HADDOCK3 configuration files were gener-
ated programmatically, which define the input .PDB files,
the output directory, and the steps of the docking process.
The logic for this programmatic generation of HADDOCK3
configuration files is available in the supplementary GitHub
repository.

Docking Process. HADDOCK3 provides a configurable in-
terface for defining the individual steps of the docking pro-
cess, including the rigid-body docking, flexible refinement,
and solvent-based refinement, along with any desired clus-
tering and filtering steps.

For this study, we customized the published HAD-
DOCK3 protocol for antibody-antigen modeling (52) to fo-
cus on generating the singular best cluster of docking results
for each experiment and reducing excess work by the dock-
ing process. The specific steps of our HADDOCK3 configu-
ration that was used for the experiments are shown in Table
2.
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Step Description # Models
1 Topology Modeling Creates CNS all-atom topology -

2
Rigid Body Modeling
n = 200

Rigid body energy minimization with CNS (it0).
Samples n models. 200

3 Cluster with FCC
Calculates the contacts between chains and then calculates the FCC matrix for each model.
Clusters the models based on the calculated contacts. 200

4
Select Top Clusters
n = 5,m = 10 Selects top n clusters of m models based on HADDOCK score 50

5 Flexible Refinement
Semi-flexible refinement using a simulated annealing protocol.
Uses molecular dynamics simulations in torsion angle space (it1) 50

6 Cluster with FCC
Calculates the contacts between chains and then calculates the FCC matrix for each model.
Clusters the models based on the calculated contacts. 50

7
Select Top Cluster
n = 1,m = 10 Selects top n clusters of m models based on HADDOCK score 10

8 Solvent Refinement Refinement by a short molecular dynamics simulation in explicit solvent (itw) 10
9 Molecular Dynamics Scoring Performs a short molecular dynamics simulation on the input models and scores them. 10

10 Cluster with FCC
Calculates the contacts between chains and then calculates the FCC matrix for each model.
Clusters the models based on the calculated contacts. ∼10

11 Calculate CAPRI Metrics Calculates i-RMSD, I-RMSD, Fnat, DockQ of the top scoring models. ∼10

Table 2. Descriptions of the steps of the HADDOCK3 docking configuration.

The HADDOCK3 system outputs multiple metrics for
the predicted binding affinities and an output set of PDB
files containing the antibody docked against the HA1 anti-
gen. Some main metrics include:

• Van der Waals intermolecular energy (vdw)
• Electrostatic intermolecular energy (elec)
• Desolvation energy (desolv)
• Restraints violation energy (air)
• Buried surface area (bsa)
• Total energy (total): 1.0vdw + 1.0elec
• HADDOCK score: 1.0vdw +0.2elec+1.0desolv +0.1air

Note that the HADDOCK Score is a conglomerate metric
used to assess the best complexes (or best cluster of complexes)
that get promoted through the various refinement iterations in the
pipeline.

Computational Scalability. For this study, we used a Docker con-
tainerized version of HADDOCK32,3, which contains all of the soft-
ware dependencies to allow HADDOCK3 to run more readily in a
high-performance computing (HPC) environment.

HADDOCK3 was run in a Singularity container on the UNC
Charlotte Orion HPC cluster on 14 nodes, each with dual 18-core
Intel Xeon Gold 6154 3.00GHz CPUs (36 cores per node). The
average walltime of the experiments was 14.63̄ minutes. The entire
set of 1,804 experiments was completed in under 2 days.

Post Processing. Once all experiments were completed, the met-
rics for each experiment were either retrieved from the CAPRI eval-
uation outputs (if the FCC clustering algorithm (53) reached conver-
gence) or from the REMARK entries of the best cluster’s .PDB files.
These metrics were organized in a single aggregate table, represent-
ing each experiment’s best cluster metrics, for subsequent visualiza-
tion and statistical analyses. The full table of experiment results is
available in the Supplementary Data.

Phylogenetic, Statistical, and Protein Structure Analyses.
For phylogenetic analyses, laboratory derived isolates were filtered
out (n = 178, shown in Table 3), resulting in a set of 18,515 isolates.
An alignment 18,515 HA sequences was generated using MAFFT

2Container GitHub Repository: https://github.com/colbyford/HADDOCKer
3Docker Hub Images: https://hub.docker.com/r/cford38/haddock

v7.471 (54) under default settings. Next, a phylogenetic tree search
was performed using this alignment with TNT v1.6 (55) using the
commands: xmult= level 1 rep 1000. One of the best scoring trees
was used for downstream analyses. StrainHub v2.0.0 (56) was used
to generate transmission networks of the phylogenetic tree by host
class and continent in Figure 2.

Statistical analyses were performed using R v4.3.4 (57) and
plots were generated using ggplot2 (58) and ggpubr (59). Any statis-
tical significance reported in this study is based on a p-value thresh-
old of α < 0.05.

Visualizations and analyses of the protein complexes were
generated using PyMOL v2.4.1 (60) and BioPandas v0.4.1 (61).

Graph-based Interface Residue Assessment. Graph-based in-
terface residue assessment function (GIRAF) was employed to eval-
uate the evolution of the binding pocket with each antibody as
previously described (24). The outgroup was first selected as se-
quence EPI242227, and a graph was computed based on the inter-
face residues with each antibody to generate reference complexes.
Subsequent graphs were then computed for each strain sequence and
antibody pair. The graph edit distance (GED) was computed as the
number of edits to the strain:antibody complex from the reference
outgroup:antibody complex. Substitutions, deletions, and additions,
were all equally weighted as a value of "1".

Ethics Statement. No human or animal samples were used in this
study. This study was conducted in accordance with the data usage
guidelines of GISAID and the research ethics policies of the Uni-
versity of North Carolina at Charlotte.

Role of Funders. No external funders were used in this study and
thus played no role in the study design, data collection, data analy-
ses, interpretation, or writing of the manuscript.

Results
From the study set of 18,693 H5 isolates, we show a break-

down of hosts similar to what has been reported in previous studies,
indicating the representative nature of our curated dataset (5, 6). As
shown in Table 3, approximately 88% of the isolates are from birds
(class Aves). Also, note that all 666 isolates from Primates were
collected from humans.
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Class Order Isolates % of Total
Galliformes 5,844 31.26%
Anseriformes 4,469 23.91%
Other Orders 934 5.00%
Not Specified 5,287 28.28%

Aves

Aves Total 16,534 88.45%
Primates (Humans) 666 3.56%
Carnivora 191 1.02%
Artiodactyla 57 0.30%
Other Orders 6 0.03%
Not Specified 360 1.93%

Mammalia

Mammalia Total 1,280 6.85%
Insecta Insecta Total 3 0.02%

Laboratory Derived 178 0.95%
Other / Environmental 698 3.73%Other
Other Total 876 4.69%

Grand Total 18,693 100%

Table 3. Taxonomic breakdown of the isolates used in this study.

As shown in Supplementary Figure 2, the proportion of H5
isolates collected from various continents has changed over time. To
date, isolates collected in 2024 are predominately from Europe.

Sequence Analyses. The clustering of the 18,693 HA1 sequences
resulted in 250 distinct clusters at ≥97% identity. Further organiza-
tion of the representative sequences of each cluster, shown in Sup-
plementary Figure 3, indicates a continuous distribution of antibody
binding performance.

Of note, antibodies 12H5, 3C11, 65C6, AVFlulgG01, and
H5M9 show the best performance overall, though there are excep-
tions of poor performance (e.g., 12H5’s interaction with EPI893474
has a poor Van der Waals energy of -39.93).

Phylogenetic and Transmission Network Analyses. Specifi-
cally, the most common pattern is avian-to-mammalian transmis-
sion, of which there are over 600 events across the tree (see Fig-
ure 2a). There are also frequent transmission events between many
continents. Bidirectional transmissions between Europe and North
America are very frequent as shown by the thick orange and yellow
lines in Figure 2b.

Worsening Binding Affinity. When considering a past-to-present
trend in viral collection date, there are significant correlations that
show a worsening in antibody binding affinity in isolates collected
from humans. See Figure 3. This worsening in binding affin-
ity is not specific to particular antibodies. Though the antibodies’
performances are from independent distributions, as shown by the
Kruskal-Wallis test in Supplementary Figure 4, the overall trend in-
dicates that more recent isolates have mutated to better evade exist-
ing antibodies (antibodies that were previously elicited by vaccina-
tion or infection or developed for therapeutic usage).

As shown in Figure 4A, there is no overall trend in the graph
edit distance of the isolates over time. In other words, when compar-
ing to the 1959 isolate, EPI242227, interactions are not necessarily
more or less abundant in more recent isolates than older ones over-
all.

As shown in Figure 4C, we see a statistically significant de-
creases of interfacing residues over time in antibodies AVFluIgF01
against human isolates. Conversely, we see a statistically significant
increase in interfacing residues in FLD194 against human residues.

These results indicate an overall worsening in antibody affin-
ity to more recent H5N1 isolates, which poses a risk to public health

in that the virus may evade existing antibodies and risk the develop-
ment of severe sickness in humans.

Mutational Effects. As indicated in Shi et al. (2014), there are var-
ious sites in the HA1 receptor binding domain that enable infection
of mammals when mutated. Our results show several statistically
significant differences in the binding affinity of antibodies given
polymorphism at sites that allow mammalian infection.

Of note, N158S, T160A/S/V, E190N, and G225R all result in
weakened antibody binding affinity across multiple metrics. Con-
versely, T160K and G228S increase binding affinity in some met-
rics. Significant changes based in Van der Waals energies and HAD-
DOCK Scores are shown in Figure 6 and all other metrics are shown
in Supplementary Figure 5.

In Figure 5, subfigures A and B represent the worst and
best binding structures across the experimental results, isolates
EPI168674 and EPI2429052, respectively. Though the epitope is
different between isolates, note the variation in quantity of polar
contacts within the respective complexes. Figure 5D is an example
of modest binding affinity between an isolate EPI658567 and anti-
body 12H5. However, this improved binding affinity compared to
other isolates is not due to the G225R mutation as this residue is not
in the epitope of the antigen.

Figure 5E shows the poor binding affinity of isolate
EPI3178330 with antibody FLD194 due to the E190N mutation.
However, this residue forms a polar contact with the antibody CDR
loop. The mutation from glutamic acid (E), a negatively charged
side chain, to asparagine (N), a polar uncharged side chain.

Isolate EPI242227 is the oldest isolate in the dataset, col-
lected in 1959. Note that this isolate contains the N158D mutation
and its interaction with various antibodies results in a wide range
of Van der Waals energies from -52.81 (worst) to -92.84 (best, with
antibody 65C3 as shown in Figure 5F).

Interfacing Residue Prevalence. An analysis of the interfacing
residues in the best complexes from all 1,804 experiments shows
patterns in particular residues forming polar contacts with the anti-
bodies tested. Residues 156, 193, 222 are often interfaced (≥25%
prevalence) in the antigen epitope. These are shown in red in Figure
7.

Many of the frequently interfaced residues shown in this
study closely neighbor antigenic and receptor binding sites reported
in Sriwilaijaroen and Suzuki (2012) Figure 2. Residues 130, 132,
158, and 159 are part of two glycosylation sites that, in 2012, were
only found in seasonal H1 viruses (35).

Discussion
Relation to Prior Studies. This in silico analysis yields the trend
of a reduction in binding affinity for neutralizing antibodies against
H5N1-designated influenza isolates. This reduction in binding affin-
ity reinforces previous studies that evolution has occurred to yield
HA proteins that are elusive of antibody neutralization (62, 63). The
trend observed is consistent with empirical studies and strengthens
the novel in silico approach taken within this study. Current bio-
surveillance efforts focus on critical mutations that have been shown
to increase virulence or transmission risk, such as those included in
the influenza risk assessment framework (IRAF) (64). This work
suggests that the current arsenal of broadly neutralizing antibod-
ies against H5N1 is becoming increasingly insufficient as H5N1
evolves, indicating a need for more studies to identify effective an-
tibodies.
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(a) Host transmission network. (b) Geographic transmission network.
Fig. 2. Transmission networks, generated by StrainHub, showing transmissions between (a) hosts and (b) continents. Node values in parentheses represent the source-hub
ratio of that class or location. A source-hub ratio of 1 indicates that the state is always the source of the transmission. The numerical labels annotated on the edges of the
graphs represent the number of transmissions as seen across the phylogenetic tree’s branches as measured in changes in metadata states.

R = 0.23, p = 0.011

Humans

20
00

20
05

20
10

20
15

20
20

20
24

−100

−80

−60

Collection Year

M
ea

n 
va

n 
de

r 
W

aa
ls

 E
ne

rg
y

A.

R = 0.17, p = 0.064

Humans

20
00

20
05

20
10

20
15

20
20

20
24

−600

−400

−200

Collection Year

M
ea

n 
E

le
ct

ro
st

at
ic

 E
ne

rg
y

B.

R = 0.074, p = 0.42

Humans

20
00

20
05

20
10

20
15

20
20

20
24

−50

−25

0

Collection Year

M
ea

n 
D

es
ol

va
tio

n 
E

ne
rg

y

C.

R = − 0.29, p = 0.0015

Humans

20
00

20
05

20
10

20
15

20
20

20
24

1000

1500

2000

2500

Collection Year

M
ea

n 
B

ur
ie

d 
S

ur
fa

ce
 A

re
a

D.

R = 0.32, p = 4e−04

Humans

20
00

20
05

20
10

20
15

20
20

20
24

−200

−160

−120

−80

Collection Year

M
ea

n 
H

A
D

D
O

C
K

 S
co

re

E.

R = 0.19, p = 0.033

Humans

20
00

20
05

20
10

20
15

20
20

20
24

−600

−400

−200

Collection Year

M
ea

n 
To

ta
l E

ne
rg

y

F.

Fig. 3. Antibody binding performance metrics over time for isolates collected from humans. Statistics shown are Spearman correlations. Overall, these plots show a worsening
trend in most antibody binding metrics of the human samples.
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Fig. 4. Graph-based analysis results showing the correlation of the graph edit dis-
tance and interfacing residue counts against collection year. Subfigures A and C
show the results of all antibodies. Overall, graph edit distance did not change sig-
nificantly over time. Subfigures B and D show Spearman correlations for specific
antibodies of interest. Graph edit distance increased significantly in humans for
FLD194. Number of interfacing residues increased in FLD194 in humans.

Diversity of H5N1 Interactions. As shown in Supplementary Fig-
ure 3, high disparities in antibody binding affinity exist between dif-
ferent sequences designated as H5N1. For example, in Supplemen-
tary Figure 3, sequence EPI597824 has a large disparity in Van der
Waals energy between antibody 3C11 and AvFluIgG03. In addition,
Supplementary Figure 5 demonstrates the effect of a single amino

acid mutation on docking metrics. One change in an amino acid
residue can lead to statistically significant differences in antibody
binding affinity. These disparities highlight the need to continue
to elucidate how differences in amino acid sequences alter binding
affinity to various antibodies. Categorizing H5N1 influenza outside
of the primary amino acid sequence but on functional binding anal-
yses may yield more effective treatments in the future.

Zoonosis Analysis. In Figure 2a, a notable transition pattern is
observed from avian species (class Aves) to mammals (class Mam-
malia), likely attributable to a mutagenic drift. Recent empirical
studies have investigated the mutational dynamics of H5N1, reveal-
ing changes in the hemagglutinin (HA) protein. While H5N1 in-
fluenza prefers binding to the α2-3 sialic receptors in birds, this
study demonstrated a binding affinity of H5N1 to α2-6 sialic acid
receptors, predominant in mammals, at almost equal proportion (4).
These authors also show that mutations that decrease neutralization
by sera from mice and ferrets immunized with the vaccine candi-
date reference strain A/American Wigeon/South Carolina/USDA-
000345-001/2021 exist in some of the most recently collected mam-
malian samples, the dairy cow outbreak starting in April 2024 (4).
Concurrently, we show here that mutations accumulated over time
in the HA protein will confer reduced neutralization by antibodies
more broadly than the current clade 2.3.4.4b H5N1 outbreak.

This in silico study aligns with these findings, indicating a
progressive decrease in H5N1’s binding affinity to antibodies in our
isolates over time. As illustrated in Figure 3, there is a marked de-
cline in affinity for human isolates. As the virus diversifies in the
avian populations, the potential pool of strains with zoonotic po-
tential to infect mammals increases. The phylogenetic and trans-
mission analysis show much more frequent transmission from avian
populations to mammalian populations. This result indicates that
much of the evolution is occurring in birds. This suggests an evolu-
tionary trajectory in birds for H5N1 towards increased infection in
mammalian hosts with a concomitant immune evasion of the virus
in mammals.

Isolate EPI3358339. EPI3358339, a H5N2 subtype isolate, was
added to this study as it is from the recent human infection of H5N2
avian influenza seen in Mexico. Unfortunately, this strain was found
in a person from Mexico who died of complications due to the infec-
tion. However, it is not yet known if the zoonotic “jump” the isolate
is cause for concern or if the individual had other comorbidites that
played a role in his death. It is also not known if this case is related
to recent poultry outbreaks in the area.

The experimental docking conformation between antibodies
and this antigen (antibody 65C3 shown in Figure 5F) are predicted
to have a relatively strong binding affinity (e.g., Van der Waals en-
ergy: [-51.96, -95.45]) across all the tested antibodies.

Thus, our experiments using this isolate’s HA do not indicate
that this isolate is highly mutated, though some mutations may have
reduced the Van der Waals and electrostatic energies of the interac-
tion with this individual’s existing antibodies, if any.

Structural Analysis. When comparing the predicted docking out-
puts to empirical structures, such as those listed in Table 1, we see
similar binding epitopes in the the predicted docking complexes ver-
sus the empirical structures (42–49).

Furthermore, the binding conformations seen in the empirical
structures often mimic the predicted complexes in the experiments
in this study, though various mutations affect the binding angle, po-
lar contacts, electrostatics, and overall affinity. These results support
the confidence in the predictive accuracy of the in silico experiments
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Fig. 5. Example interface renderings showing the diversity in epitopes, residues, and binding affinity. The grey structure is the Fab portion of the docked antibody and the
purple structure is the HA1 antigen with sticks designating the polar contacts between them. The list below each subfigure contains the interfacing residues on the antigen
chain.
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Fig. 6. The distribution of Van der Waals energies and HADDOCK score docking metrics broken out by antigen mutations. The first amino acid shown on the left of each plot
in gold represents the reference residue at that position as described in Shi et al. (2014). Statistical comparisons shown are significant Wilcoxon Rank Sum test p-values at
the α<0.05 level.
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Fig. 7. Surface rendering of the HA1 globular head domain (reference PBD 2FK0)
showing the prevalence of each residue to form polar contacts (within 3Å of antibody
residues) across the experiments in this study. Annotated residues are those with
≥16% prevalence.

given their similarity to empirically derived structures. However,
empirical studies are still needed to validate specific complexes.

Motifs of Interest and Future Research. H5N1 exists as an en-
demic in avian populations. This endemic creates a pool contain-
ing vast numbers of host species in which the RNA virus evolves
rapidly. It is an endemic that is difficult to diminish due to the nature
of the HA protein’s host receptors lacking homogeneity. Serologi-
cal immunity from vaccination or prior infection in avian hosts may
have yielded selective pressures in the evolution of specific mech-
anisms of entry for H5N1 (65). Subsequently, high infection rates
lead to new mechanisms of entry. Over time, serological immunity
from original vaccination and/or infection is reduced, and the cycle
of influenza transmission continues.

Highly conserved portions of HA are of high interest. The
three primary conserved elements of the receptor-binding site (RBS)
on the HA1 subunit are the 130 and 220-loops and the 190-helix
(66–68). As shown in Figures 5 and 7, the antibodies docked to
conserved motifs on the studied H5N1 strains, further supporting
the empirical literature that initially identified their neutralizing ca-
pability.

More recent development of multivalent mRNA-based vac-
cines has been successful in H5 influenza A clade 2.3.4.4b (from
which there are 15 sequences used in the structural aspects of this
study) (69). The selection of high-quality sequences that elicit
strong antibody responses is a complex process in mRNA vaccine
development. However, in silico modeling, as presented in this
study, reduces the wet laboratory workload to evaluate candidate
sequences from which vaccines can be developed.

In addition, our broad analyses of various antibodies versus
strains of interest may guide future therapeutic antibody develop-
ment. Antibodies tested within this study, particularly those with
high affinity to studied strains that may bear high homology to those
that will arise in the future, can be used as a basis for future phar-
maceutical development.

Computational modeling of immunoprotein interactions as

shown in this study and previous works (24–29) have proven to be
highly effective in the prompt prediction and understanding of the
health impacts of pathogen variants. For H5 influenza, this study,
along with recent preprints (18, 70), show an overall trend of wors-
ening antibody binding and depicts the recent increase in avian-
to-mammalian transmissions due to various mutations. This sug-
gests that there is an impending danger to human health for highly
pathogenic strains of H5 influenza that can infect avian and mam-
malian livestock and jump to humans.

More broadly, these results indicate that the virus has poten-
tial to move from epidemic to pandemic status in the near future.
"Pandemic" here refers to the geographic spread of a virus, which
H5N1 has already achieved, but these results more specifically as-
sert that the worsening trend of the antibody performance along with
the already present animal pandemic is a cause for concern for an
eventual human pandemic.
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Fig. 2. Bar chart of the proportion of isolates collected from each continent by year.
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Fig. 3. Heatmap of van der Waals energies for each antibody-antigen experiment, shown with cluster dendrograms.

Ford et al. | Antibody-antigen modeling of H5 influenza bioRχiv | 13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2024. ; https://doi.org/10.1101/2024.07.14.603367doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.14.603367
http://creativecommons.org/licenses/by/4.0/


Kruskal−Wallis, p = 3.5e−08

−100

−75

−50

−25

10
0F

4

12
H

5

13
D

4

3C
11

65
C

6

A
V

F
lu

Ig
G

01

A
V

F
lu

Ig
G

03

F
LD

19
4

F
LD

21
.1

40

H
5.

3

H
5M

9

Antibody

M
ea

n 
va

n 
de

r 
W

aa
ls

 E
ne

rg
y

A. Kruskal−Wallis, p < 2.2e−16

−600

−400

−200

10
0F

4

12
H

5

13
D

4

3C
11

65
C

6

A
V

F
lu

Ig
G

01

A
V

F
lu

Ig
G

03

F
LD

19
4

F
LD

21
.1

40

H
5.

3

H
5M

9

Antibody

M
ea

n 
E

le
ct

ro
st

at
ic

 E
ne

rg
y

B.

Kruskal−Wallis, p < 2.2e−16

−50

−25

0

25

10
0F

4

12
H

5

13
D

4

3C
11

65
C

6

A
V

F
lu

Ig
G

01

A
V

F
lu

Ig
G

03

F
LD

19
4

F
LD

21
.1

40

H
5.

3

H
5M

9

Antibody

M
ea

n 
D

es
ol

va
tio

n 
E

ne
rg

y

C. Kruskal−Wallis, p = 1.1e−11

1000

1500

2000

2500

3000
10

0F
4

12
H

5

13
D

4

3C
11

65
C

6

A
V

F
lu

Ig
G

01

A
V

F
lu

Ig
G

03

F
LD

19
4

F
LD

21
.1

40

H
5.

3

H
5M

9

Antibody

M
ea

n 
B

ur
ie

d 
S

ur
fa

ce
 A

re
a

D.

Kruskal−Wallis, p < 2.2e−16

−200

−150

−100

−50

10
0F

4

12
H

5

13
D

4

3C
11

65
C

6

A
V

F
lu

Ig
G

01

A
V

F
lu

Ig
G

03

F
LD

19
4

F
LD

21
.1

40

H
5.

3

H
5M

9

Antibody

M
ea

n 
H

A
D

D
O

C
K

 S
co

re

E. Kruskal−Wallis, p < 2.2e−16

−600

−400

−200

10
0F

4

12
H

5

13
D

4

3C
11

65
C

6

A
V

F
lu

Ig
G

01

A
V

F
lu

Ig
G

03

F
LD

19
4

F
LD

21
.1

40

H
5.

3

H
5M

9

Antibody

M
ea

n 
To

ta
l E

ne
rg

y

F.

Fig. 4. The distribution of various docking metrics broken out by antibody. Statistics shown are Kruskal-Wallis test p-values.
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Fig. 5. The distribution of various docking metrics broken out by antigen mutations. The first amino acid shown on the left of each plot in gold represents the reference residue
at that position as described in Shi et al. (2014). Statistical comparisons shown are significant Wilcoxon Rank Sum test p-values at the α<0.05 level.
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