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Integrated multimodal cell atlas of 
Alzheimer’s disease

Alzheimer’s disease (AD) is the leading cause of dementia in older adults. 
Although AD progression is characterized by stereotyped accumulation of 
proteinopathies, the affected cellular populations remain understudied. 
Here we use multiomics, spatial genomics and reference atlases from the 
BRAIN Initiative to study middle temporal gyrus cell types in 84 donors  
with varying AD pathologies. This cohort includes 33 male donors and 
51 female donors, with an average age at time of death of 88 years. We 
used quantitative neuropathology to place donors along a disease 
pseudoprogression score. Pseudoprogression analysis revealed two 
disease phases: an early phase with a slow increase in pathology, presence 
of inflammatory microglia, reactive astrocytes, loss of somatostatin+ 
inhibitory neurons, and a remyelination response by oligodendrocyte 
precursor cells; and a later phase with exponential increase in pathology, 
loss of excitatory neurons and Pvalb+ and Vip+ inhibitory neuron subtypes. 
These findings were replicated in other major AD studies.

Alzheimer’s disease (AD) is characterized by deposition of hallmark 
pathological peptides and neurodegeneration that progress across par-
tially overlapping neuroanatomical and temporal axes1,2. This process 
is generally believed to follow a stereotyped progression with amyloid 
beta (Aβ) plaques starting in the cerebral cortex3 and hyperphosphoryl-
ated Tau (pTau) aggregation (neurofibrillary tangles (NFTs)) starting 
in the brainstem and limbic system4. Single-cell and spatial genomics 
technologies now offer a dramatically higher-resolution analysis of 
complex brain tissues; multiple studies have now begun to apply them 
to identify cellular vulnerabilities and molecular changes with AD5–15.

Recent work catalyzed by the BRAIN Initiative Cell Census Net-
work (BICCN) and BRAIN Initiative Cell Atlas Network (BICAN) has 
established best practices in experimental and quantitative analyses 
to harness single-cell genomics, spatial transcriptomics and patch 
sequencing (patch-seq) methods to characterize cellular properties 
and build a knowledge base of brain cell types16–22. Systematic BICCN 
and BICAN efforts are now producing the first brain-wide cell atlases of 
the mouse23 and human brain17–19, providing robust and highly curated, 
genomically based reference cell classifications, spatial maps of cellular 
distributions, and characterization of cellular properties in the normal 
brain. These reference classifications provide an extremely powerful 
foundational reference to understand the cellular, molecular and 

epigenomic underpinnings of AD. Furthermore, mapping to this refer-
ence allows integration across data modalities and across independent 
studies to validate findings and leverage a growing knowledge base on 
the properties and function of cell types that are affected in disease.

The Seattle Alzheimer’s Disease Brain Cell Atlas (SEA-AD) consor-
tium aims to use these advances to produce the highest-resolution, 
multimodal, brain-wide cell atlas of AD and related dementias mapped 
to the BICCN foundational references. Keys to achieving this goal 
are: (1) a high-quality donor cohort spanning the full spectrum of AD 
pathology (instead of a case-control design), recruited from longitu-
dinal cohort studies with well-characterized participants; (2) the use 
of improved tissue preparation methods for single-nucleus and spatial 
genomics16–19,24; (3) deep donor characterization with all analytical 
methods applied to the same donors; (4) sufficient sampling to analyze 
the full diversity of cell types; (5) mapping profiled cells to the highly 
granular and curated BICCN cell type reference; and (6) validating 
cellular phenotypes across cortical areas, orthogonal modalities and 
independent datasets.

The current study focused on the middle temporal gyrus (MTG), 
an area involved in language and semantic memory processing25 and 
higher-order visual processing26. Many studies, from the histopathol-
ogy of Braak and Braak4 to longitudinal studies of Tau positron emission 
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using highly optimized brain preparation methods (mean postmor-
tem interval = 7.0 h; Extended Data Fig. 1b) that enable exceptionally 
high-quality snRNA-seq, snATAC–seq and MERFISH profiling17–19,23,36,37. 
Donors were included if death occurred within the specific time of data 
collection (except for specific exclusion criteria noted in the Methods) 
(Supplementary Table 1). SEA-AD includes donors across the range of 
AD neuropathological change (ADNC) (nine, no AD; 12 low; 21 interme-
diate; 42 high ADNC) who were all aged (minimum age at death = 65, 
mean = 88; Fig. 1b, top).

Female donors outnumbered male donors (51 females, 33 males), 
particularly in those with high ADNC (29 females, 13 males), which is 
consistent with the known prevalence of AD in females38 (Fig. 1b, middle). 
Donors with an APOE4 allele included nearly half (20 of 42) of high ADNC 
cases, a quarter (five of 21) of intermediate cases and no low ADNC or no 
AD cases (Fig. 1b, bottom). Braak stage (tangles), Thal phase (plaques) 
and Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) 
(neuritic plaques) increased as expected with ADNC (Fig. 1c, left). Nearly 
three-quarters (31 of 42) of high ADNC cases had dementia before death, 
versus a third in intermediate (seven of 21) and low (four of 12) ADNC 
cases, and none in no AD cases (Fig. 1c, middle). Donors with any level of 
Lewy body dementia (LBD), vascular pathology or limbic-predominant 
age-related TDP-43 encephalopathy (LATE) were included because these 
conditions are common comorbidities in AD39,40. Roughly half (42 of 84) 
had one or more severe copathologies (Fig. 1c, right).

Nearly all (82 of 84) had high presequencing quality control met-
rics (for example, brain pH, RNA integrity number (RIN) scores and 
sequencing library yield) across the whole range of disease severity 
(Extended Data Fig. 1b), with two outlier samples excluded because 
of low RIN and brain pH. Post-sequencing metrics were also uniformly 
high across disease severity (Extended Data Fig. 1c), suggesting no 
inherent tissue quality degradation related to advanced age and neu-
ropathology in most donors. However, principal component analysis 
on snRNA-seq and snATAC–seq library-level metrics identified a subset 
of high pathology donors (11 of 42, 26.2%) with slightly lower-quality 
data in both modalities (Fig. 1d and Extended Data Fig. 2a). Longitu-
dinal cognitive testing in our cohort spanned four cognitive domains 
(memory, executive, language and visuospatial function41). These 
donors had steeper memory decline compared to other high pathology 
donors (slopes in memory decline = −0.15 in severely affected donors 
versus −0.11 in all other high ADNC donors; P value with no AD and low 
ADNC donors as base outcome = 0.01 versus 0.15; Fig. 1e); other cog-
nitive domains showed a similar trajectory across groups (Extended 
Data Fig. 2b). Immunoreactivity to neuronal nuclear protein (NeuN-ir) 
was previously shown to anticorrelate with pTau pathology42. These 
11 donors had a pronounced reduction in NeuN-ir that was not due 
entirely to cell loss (Fig. 1f,g). Given the steeper cognitive decline and 

tomography imaging27,28, demonstrate that MTG is a transition zone 
between aging-related or preclinical AD-related medial temporal lobe 
pTau and more advanced stages of AD, where neocortical pTau extends 
across the brain and is strongly correlated with dementia4,29–31. By com-
bining temporal modeling of disease severity based on quantitative 
neuropathology with single-nucleus genomics and spatial analyses, 
this approach provides a comprehensive understanding of the specific, 
highly granular cell types affected over the course of disease, where 
those affected cells are located in tissue microarchitecture and when 
they are affected as disease progresses. This strategy to integrate 
data across studies to a common reference is highly extensible and 
provides a unifying framework for the AD community. Study data are 
freely available at the SEA-AD’s website (https://portal.brain-map.org/
explore/seattle-alzheimers-disease).

Results
Profiling AD progression across pathological stages
To construct an integrated multimodal cellular atlas of AD and 
comorbid related disorders (AD/AD and related dementias) we 
generated (1) quantitative neuropathological measurements, (2) 
single-nucleus RNA sequencing (snRNA-seq), single-nucleus assay 
for transposase-accessible chromatin with sequencing (snATAC–seq) 
and single-nucleus multiome (snMultiome), and (3) cellularly resolved 
spatial transcriptomics (multiplexed error-robust fluorescence in situ 
hybridization (MERFISH)) in the MTG from a cohort of 84 aged donors 
spanning the spectrum of AD pathology (Fig. 1a and Extended Data 
Fig. 1a). We collectively profiled 3.4 million high-quality nuclei across 
all modalities, mapping each to one of 139 molecular cell types from 
an expanded BRAIN Initiative MTG cellular taxonomy18 that included 
disease-associated states. A continuous pseudoprogression score (CPS) 
was constructed from quantitative neuropathology, which ordered 
donors along a neuropathological continuum, and increased discovery 
power to identify molecular and cellular changes. To validate and repli-
cate these results, we generated a similar 1.2-million nuclei snRNA-seq 
dataset from Brodmann area 9 (A9) in the same 84 donors, mapping 
to a matched BRAIN Initiative A9 taxonomy. To replicate findings, we 
uniformly reprocessed ten publicly available datasets that applied 
snRNA-seq to 4.3 million high-quality nuclei from the prefrontal cortex 
(PFC), which includes the A9 of 707 additional donors also spanning the 
spectrum of AD pathology. These multimodal datasets, tools to explore 
them and tools to map new datasets to this new cellular taxonomy are 
all available at SEA-AD.

The SEA-AD cohort was derived from longitudinally character-
ized research brain donors from the community-based Adult Changes 
in Thought (ACT) study and the University of Washington (UW)  
Alzheimer’s Disease Research Center (ADRC)32–35. Brains were collected 

Fig. 1 | SEA-AD study of the MTG and cohort description. a, Schematic detailing 
the experimental design for applying quantitative neuropathology, snRNA-
seq, snATAC–seq, snMultiome and MERFISH to the MTG of SEA-AD donors. 
b, SEA-AD cohort demographics, depicting age at death, biological sex and 
APOE4 allele, stratified according to ADNC score. Age at death is represented 
by box-and-whisker plots with the box representing the interquartile range 
(IQR) and the whiskers representing 1.5 times the IQR. The solid line indicates 
the median. c, SEA-AD cohort composition stratified according to ADNC versus 
Braak stage Thal phase (left), and CERAD score as heatmaps, with dementia or 
comorbidities as bar plots. The number of donors in each box and the fraction 
are shown in parentheses. d, First PC for snRNA-seq versus snATAC–seq quality 
control metrics for each library color-coded according to ADNC category. The 
dashed red lines indicate the point where values are above 1.5 times the IQR. The 
gray line represents the linear regression (Pearson R = 0.80) e, The center lines 
represent the mean of the locally estimated scatter plot smoothing (LOESS) 
regression on longitudinal cognitive scores in the memory domain across ADNC 
0–2 donors in gray, ADNC 3 donors in gold and ADNC 3 severely affected donors 
in purple. Uncertainty represents the s.e. from 1,000 LOESS fits with 80% of the 

data randomly selected in each iteration. f, Exemplar low-power and high-power 
micrographs showing the entire cortical column and cortical layers 3 and 5 from 
an ADNC3 donor (left) and a severely affected donor lacking NeuN-ir (right). 
Immunostaining was performed in the entire SEA-AD cohort (n = 84). g, Scatter 
plot showing the number of NeuN immunoreactive cells per area in cortical 
layer 3 versus the PC for snRNA-seq in d. Severely affected donors (purple) 
localize at the end of this trajectory. Gray, logistic regression; error bars, s.d. 
h, Box-and-whisker plots showing the number of unique molecular identifiers 
(UMIs) detected per cell for MEG3 and MALAT1, MT-CO1 and MT-ND3, ADNC 
high donors or severely affected donors. Outliers are not shown. n = 543,252 
represents the total number of cells across selected donors. i, Bar plot showing 
the number of chromatin accessible regions in 11 randomly selected ADNC high 
donors or severely affected donors. ‘Shared consensus’ are regions shared across 
both groups; ‘consensus’ denotes regions shared across members of each group; 
and ‘cohort-specific’ depicts peaks unique to some members of each cohort. 
The cohort demographics can be found in Supplementary Table 1. f, Scale bar, 
100 μm. Schematics in a created using BioRender.com.
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effects on multiple data modalities, we named these donors severely 
affected.

Despite having more reads per nucleus, snRNA-seq libraries  
from severely affected donors had fewer UMIs, genes detected, 

uniquely mapped reads (mostly reflecting increased ribosomal 
RNA) and reads with introns (reflecting mRNA versus pre-mRNA) 
(Extended Data Fig. 2a). Nuclei from severely affected donors had 
lower nuclear-localized RNA43 (for example, MALAT1 and MEG3) and 
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Fig. 2 | MTG quantitative neuropathology orders donors according to 
pseudoprogression of disease. a, Representative cortical column visualized 
with immunohistochemistry (IHC). Cortical layers (L1–L6) and white matter are 
indicated. Immunostaining was performed in the entire SEA-AD cohort (n = 84). 
b, Higher-powered micrographs showing IHC staining for protein aggregates 
and cellular populations. Bottom, masks showing positive voxels generated 
by HALO in red for single staining and both red and green for duplex staining. 
Immunostaining was performed in the entire SEA-AD cohort (n = 84). c, Heatmap 
showing a hierarchically organized co-correlation matrix of quantitative 
neuropathology variables. The black boxes on the diagonal indicate eight 
correlated clusters. The red box indicates the anti-correlation representing AD 
protein pathologies and NeuN immunoreactivity (NeuN-ir), respectively. The 
blue box indicates the correlation between variables related to NFTs and pTDP-
43 variables. d, Heatmap showing the number of pathological protein objects 
detected per unit area across all cortical layers in each donor, ordered along a 
CPS. All values were converted to z-scores and adjusted according to a moving 
average. e, Heatmap showing the number of cellular objects detected per unit 

area across all cortical layers, ordered along the CPS. Hem, hematoxylin+ nuclei; 
GFAP, IBA1 and NeuN indicates the number of positive cells. All values were 
converted to z-scores and adjusted according to a moving average. f, Heatmap 
showing the cognitive scores at the last visit (CASI) and AD pathology stage 
(ADNC, Thal, Braak), ordered along the CPS. All values were adjusted according 
to a moving average. g–i, Scatter plots showing how specific quantitative 
neuropathological variables relate to CPS. The dots represent donor values in 
the cortical layer; the lines are LOESS regressions within each layer. g,h, Cluster 3 
consists of variables increasing along pseudoprogression, such as the number of 
AT8+ cells per unit area, 6E10+ objects per unit area (g) or the average 6E10+ object 
diameter of the 6E10-ir Aβ plaques (h). i, Cluster 7 included variables decreasing 
their value along CPS, such as the number of NeuN+ cells or percentage NeuN-ir 
cell area. The heatmap on each quantifiable neuropathological variable across 
layers represents the P value from a general additive model. P values are the two-
tailed P values for the t-statistics of the parameters as described in the Python 
package statsmodels. The cohort demographics can be found in Supplementary 
Table 1. a, Scale bar, 200 μm.
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higher cytosolic localized RNA (for example, RNA from mitochondri-
ally encoded genes) compared to other high ADNC donors (Fig. 1h). To 
disentangle whether reduced nuclear representation was due to global 
transcriptional shutdown or degradation, we computed open chro-
matin peaks from high pathology donors and assessed their similarity 
according to Jaccard distance. The chromatin landscape segregated 
the 11 severely affected donors from matching high ADNC donors 
(Extended Data Fig. 2c). We saw no difference in consensus peak length 
distributions between groups (Methods and Extended Data Fig. 2d). 
However, severely affected donors showed many fewer peaks (Fig. 1i), 
which were almost entirely a subset of peaks seen in other high pathol-
ogy donors. Notably, there was a small number of peaks (n = 1,574) 
unique to severely affected donors that were enriched for binding 
motifs for transcription factors associated with inflammation, dedif-
ferentiation and AD pathology (Extended Data Fig. 2e). Taken together, 
these results suggest that severely affected donors underwent global 
chromatin repression leading to transcriptional shutdown. As severely 
affected donors showed systematically lower data quality (Extended 
Data Fig. 2f), we excluded them from the analyses on gene expression 
changes.

Quantifying the progression of AD severity
To create a quantitative aggregate metric of the local burden of pathol-
ogy that accompanies AD progression, we first used machine learning 
approaches to quantify neuropathological variables (Extended Data 
Fig. 3a). This included markers for conventional AD neuropathologi-
cal staging, including pTau (AT8) for NFTs and Aβ (6E10) for amyloid 
plaques, and additional markers for associated comorbid patholo-
gies (pTDP-43, alpha synuclein (α-Syn)) and cellular changes (ionized 
calcium-binding adapter molecule 1 (IBA1) for microglia, glial fibrillary 
acidic protein (GFAP) for astrocytes, NeuN for neurons and hematoxylin 
and eosin to assess cytopathology and white matter integrity; Fig. 2a,b 
and Supplementary Table 2).

The number of Aβ plaques and pTau+ neurofibrillary-tangle-bearing 
neurons in each donor were consistent with traditional staging thresh-
olds for Braak stage and Thal phase, respectively (Extended Data 
Fig. 3b). However, at higher Braak stages and Thal phases, we observed 
high variability in pathological burden that underscored the limita-
tion of classical staging (Extended Data Fig. 3b). pTDP-43 and α-Syn 
pathologies were detected in the relatively small number of donors 
with high-stage LATE-NC44 and neocortical LBD, respectively (Extended 
Data Fig. 3c). Cross-correlation of the quantifiable neuropathological 
variables followed by hierarchical clustering revealed eight biologically 
coherent clusters (Fig. 2c), with two anticorrelated clusters: cluster 3, 
which contained measurements of AD-related pathological proteins 
(that is, diameter of Aβ plaques, number of Aβ plaques or pTau-bearing 
cells); and cluster 7, which contained NeuN-ir in neuron-related vari-
ables (that is, the number of NeuN-ir nuclei per area).

Inspired by biophysical studies45, which suggest that pathology 
aggregates exponentially in AD, we constructed a Bayesian model to 
infer AD pathological burden from the trajectory of each quantifiable 
neuropathological variable. The models assigned a continuous pseu-
doprogression score (CPS) from 0 to 1 to each donor (Extended Data 
Fig. 4a). Along the CPS, the number of pathological pTau-bearing neu-
rons and Aβ plaques increased exponentially across donors (Fig. 2d and 
Extended Data Fig. 4b). There was no clear relationship to pTDP-43 and 
α-Syn levels. The number of NeuN-ir nuclei decreased along the CPS but 
had linear dynamics. Later in the CPS, in donors with the highest patho-
logical burden, we observed an increased number of nuclei detected 
per area of GFAP+ nuclei (Fig. 2e and Extended Data Fig. 4b), which is 
consistent with later-stage astrogliosis. Importantly, CPS correlated 
with independent clinical data not included in the model, including 
Braak stage, Thal phase, ADNC score and cognitive scores (Cognitive 
Abilities Screening Instrument (CASI)), but not other covariates such 
as age (Fig. 2f and Extended Data Fig. 4c).

To understand quantifiable neuropathological dynamics, we 
divided CPS into five equal bins and determined whether significant 
changes occurred in each with a generalized additive model. Cluster 3 
included several variables related to plaque and tangle pathology that 
mostly had their first significant increases later in the CPS (Fig. 2g). 
Specifically, a CPS of 0.4–0.6 (bins 2 and 3) was a critical point when 
pTau-bearing cells and Aβ plaques started accumulating more sub-
stantially and cognitive deficits increased. Within cluster 3, Aβ plaque 
diameter increased early (Fig. 2h), with significant change starting at 
a CPS of 0.2 (bin 1), suggesting that other Aβ species such as peptides 
and oligomers may be present. NeuN immunoreactivity decreased 
significantly along the CPS (Fig. 2i). Furthermore, we observed an 
interaction between clusters 1 and 3 (Fig. 2c, blue box and Extended 
Data Fig. 4d) that captures the accumulation and colocalization of 
pTDP-43 inclusions in pTau-bearing cells, as described previously46. 
Most of the remaining variables displayed significant increases after 
CPS bin 3 (Extended Data Fig. 4e). Taken together, CPS captures AD 
severity in a continuous quantitative metric and defines two epochs: 
(1) an early epoch where donors have low levels of pathology and are 
cognitively unaffected but exhibit neuronal loss and evidence of early 
amyloid pathology; and (2) a late epoch where donors have mark-
edly increased levels of AD pathology, neuronal loss and cognitive  
impairment.

Constructing an integrated, multimodal AD atlas in the MTG
Previous BICCN efforts identified 151 transcriptionally distinct 
cell types and states in the MTG from neurotypical adult reference 
donors17, hierarchically organized into 24 subclasses (for example, L2/3 
intratelencephalic-projecting excitatory neurons or L2/3 IT) within 
three main classes (excitatory neurons, inhibitory neurons and non-
neuronal cells). We used this BICCN reference as a base to construct a 
cellular taxonomy for SEA-AD. To map SEA-AD data to cell types con-
sistently across all 84 donors, we first defined robust transcriptional 
types, named supertypes, in the BICCN reference; 125 supertypes 
represented cell types that could be reliably reidentified in reference 
datasets (mean F1 score = 0.91) using hierarchical probabilistic Bayes-
ian mapping47,48(Extended Data Fig. 5a,b). We then mapped SEA-AD 
snRNA-seq and snMultiome nuclei to these supertypes using the same 
mapping method (Fig. 3a). After removing low-quality nuclei (Extended 
Data Fig. 5c), we noted some nonneuronal nuclei that had systematically 
lower mapping scores, which suggested SEA-AD-specific cell types or 
states (Extended Data Fig. 5d). We used a clustering-based approach to 
identify and add 14 nonneuronal cell types or states to the final SEA-AD 
taxonomy of 139 supertypes (Fig. 3a, Extended Data Fig. 5e and Meth-
ods). A9 snRNA-seq data from the same SEA-AD donors were mapped 
to a matched A9 BRAIN Initiative cellular taxonomy using identical 
methods. We then extended our transcriptionally defined supertypes 
across snRNA-seq, snATAC–seq and snMultiome datasets to construct 
a joint multiomic representation49 from both neurotypical reference 
donors and donors with the disease (Extended Data Fig. 6a–e).

To define the spatial distribution of supertypes and to validate cel-
lular changes, we generated a large-scale, cellularly resolved MERFISH 
dataset, using a 140-gene panel (Supplementary Table 3) and including 
69 sections from a subset of SEA-AD donors (n = 27; Extended Data 
Fig. 7a). This dataset passed stringent quality control metrics; when 
compared against bulk RNA-seq from brain samples and correlated 
transcript counts across whole-tissue sections, it also exhibited high 
donor technical reproducibility and high supertype mapping accu-
racy (Extended Data Fig. 7b–e). After mapping each cell in the spatial 
transcriptomic dataset to subclasses and supertypes, we found con-
cordance between expected and mapped spatial distributions; for 
example, excitatory intratelencephalic (IT) subclasses were restricted 
to expected cortical layers and matched proportions observed in pre-
vious studies of neurotypical MTG tissue17,50 (Extended Data Fig. 7f,g). 
There was also high qualitative correspondence in gene expression 
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across subclasses between donor-matched snRNA-seq and MERFISH 
data (Extended Data Fig. 7h).

Vulnerable and disease-associated supertypes
To identify vulnerable and disease-associated cell populations as 
a function of AD progression9,51–55, we analyzed changes in super-
type abundance across cognitive status, ADNC and CPS in the MTG 
snRNA-seq, snATAC–seq and snMultiome datasets. We conducted 
tests for neuronal and nonneuronal cells separately as we sorted these 
populations separately (Methods). Multiple neuronal and nonneuronal 
supertypes decreased in relative abundance as a function of disease 
severity, while a few highly specific nonneuronal supertypes increased 
(Fig. 3b). A similar pattern of changes in supertype abundance was seen 
for all disease metrics, with 36 of 139 (26%) supertypes significantly 
affected (mean inclusion probability greater than 0.8) across each 
disease-related covariate. The number and effect sizes of the affected 
supertypes were significantly less in other covariates; we observed 
consistent results with and without the severely affected donors and 
in other single-nucleus data modalities (Extended Data Fig. 7i,j and 
Supplementary Table 4).

Only a subset of supertypes in most subclasses were affected, 
highlighting the importance of analysis at high cellular granularity. 
We refer to cell types that decrease in their relative abundance along 
the CPS as vulnerable, those that increase as associated, those that are 
unchanged as unaffected and those encompassing vulnerable and asso-
ciated supertypes as affected. The extensive annotation of the BICCN 
reference enabled meaningful interpretation of affected cells. The vul-
nerable neuronal supertypes included a subset of excitatory IT neuron 
types largely in layer 2 or 3 (L2/3 IT), a subset of GABAergic interneuron 
types derived from the medial ganglionic eminence (MGE) (somatosta-
tin inhibitory (Sst) and Pvalb) and caudal ganglionic eminence (CGE) 
(Vip, Lamp5 and Sncg) (Fig. 3b, left). Among nonneuronal populations 
that were affected, we observed increases in one microglial and one 
astrocytic supertype and decreases in one oligodendrocyte and one 
oligodendrocyte progenitor cell (OPC) supertype (Fig. 3b, right). Sst 
interneuron and oligodendrocyte supertypes decreased early and 
continuously with CPS, accompanied by increases in microglial and 
astrocyte supertypes (Fig. 3c, left). Notably, L2/3 IT neurons and Pvalb 
interneurons decreased sharply at high CPS. More than half (32 of 58) 
of supertypes affected in the MTG also changed in the same donors 
in A9, affected later in disease progression, including nearly all types 
(32 of 34) showing changes in A9 (Fig. 3b). The dynamics of supertype 
changes with CPS were also remarkably similar across regions (Fig. 3c, 
left). Spatial transcriptomics corroborated the vulnerability of specific 
Sst supertypes. The relative abundances of vulnerable Sst neurons 
were highly correlated (correlation = 0.84) between the snRNA-seq 
and MERFISH datasets (Fig. 3d, left) and there was a consistent decline 
in Sst supertypes across modalities (Fig. 3d, right).

Finally, to understand molecular processes dysregulated by dis-
ease, we tested for expression changes along the CPS across each super-
type (Extended Data Fig. 8a and Supplementary Table 5). The numbers 
of genes with significantly altered expression ranged from roughly 
6,000 (in highly abundant IT excitatory neurons) to 180 (endothe-
lial cells and vascular leptomeningeal cells (VLMCs)) (Extended Data 
Fig. 8b), the latter close to the expected false discovery rate. There was 
modest correlation (Pearson = 0.62) between the number of nuclei in a 
supertype and the number of genes called significant (Extended Data 
Fig. 8c). To visualize the complex temporal changes in gene expres-
sion, we created a gene-dynamic space encompassing each gene’s 
mean expression, and earlier and later effect sizes across CPS in all 
supertypes (Extended Data Fig. 8d–f). This integrated space illustrates 
both cell-type-selective changes and temporal dynamics common 
across broader cell subclasses. Supplementary Table 6 contains the 
gene set enrichments for 31 curated gene sets related to molecular 
processes implicated in AD. For example, nearly every type of neuron 
showed decreases along the CPS in the electron transport chain (ETC) 
and several ribosomal genes (Extended Data Fig. 8g).

An integrated atlas of community AD data
Previous studies described AD-associated molecular and cellular 
changes5–15; however, cross-study comparisons are challenging without 
common cell annotations. To corroborate the results, we harmonized 
snRNA-seq data and associated donor metadata from the PFC from 
ten additional AD studies spanning 707 donors5–14. Cohorts from most 
studies, including the SEA-AD, spanned the spectrum of plaque and 
tangle pathology (Fig. 4a, top and Extended Data Fig. 9a), although 
the SEA-AD contained a greater fraction of donors with neurofibrillary 
tangle spread into the PFC (Braak stages V and VI). With rare exceptions9, 
the fraction of donors in each cohort with an APOE4 allele, clinically 
diagnosed with dementia and with severe comorbidities were similar 
(Fig. 4a, bottom and Extended Data Fig. 9a). The SEA-AD profiled a 
relatively large number of donors, number of overall nuclei and num-
ber of nuclei per donor, while also having high sequencing depth and 
gene detection per nucleus, designed to allow highly granular cell type 
analyses (Fig. 4b and Extended Data Fig. 9b).

All datasets were mapped to the BRAIN Initiative A9 cellular 
taxonomy using the same hierarchical approach as outlined above; 
marker-based signature scores were computed for each supertype in 
each dataset (Extended Data Fig. 9c). Model confidence and supertype 
signature scores were uniformly high across types (Fig. 4c except for 
ref. 7), allowing construction of an integrated representation across 
all cells and across cells in each cell type neighborhood (Fig. 4d and 
Extended Data Fig. 9d). Two studies13,14 contained sufficient cells and 
donors to assess supertype abundance along the ADNC. Eight of 34 
supertypes with significant changes in A9 in SEA-AD also changed 
in these studies (Fig. 4e, Extended Data Fig. 9e and Supplementary 

Fig. 3 | Vulnerable populations in the MTG concentrate around superficial 
supragranular layers. a, Schematic showing the hierarchical mapping procedure 
used to create the SEA-AD taxonomy and annotate all SEA-AD cells. Reference 
MTG cells were used to define neuronal supertypes (Methods). SEA-AD nuclei 
are colored light gray. Cell subclasses and supertypes are indicated. b, Bar plots 
showing the effect sizes for relative abundance changes in MTG associated with 
cognitive status (top), ADNC (middle) or CPS (bottom), controlling for sex, age, 
single-cell technology and APOE4 status. Below, effect sizes for A9 across CPS, 
controlling for sex, age at death and race. Red, significantly changed in both 
cortical regions; dark gray, significantly changed in one cortical region; light gray, 
not significantly changed. The light gray lines separate subclasses in the same 
cellular neighborhood; darker gray lines separate cellular neighborhoods. The bar 
plots and lines represent the average and s.e.m. over 139 compositional tests in 
which we rotated the reference population. In each test, n = 82 donors were used 
to fit the model. c, Center lines are the mean of the LOESS regressions relating the 
log-normalized relative abundance (within all neuronal or all nonneuronal nuclei) 

of supertypes that were significantly changed in the MTG (two plots on the left) 
or A9 (two plots on the right) to the CPS. Supertypes were grouped according to 
their subclasses to facilitate visualization of how each set of supertypes changed. 
Sst supertypes decreased in their relative abundance early in CPS, before an 
exponential increase in the number of plaques and tangles present (indicated on 
each plot with a dashed light gray line). In contrast, L2/3 IT and Pvalb supertypes 
decrease as AD pathology increases. Uncertainty in each line represents the s.e. 
from 1,000 LOESS fits with 80% of the data randomly selected in each iteration. 
d, Left, scatter plot showing the correlation of vulnerable Sst supertype relative 
abundance in snRNA-seq and MERFISH data from matched donors (R = 0.84). 
Right, scatter plot relating the relative abundance of vulnerable Sst supertypes 
to CPS in the snRNA-seq (orange) and MERFISH (blue) datasets from the same 
donors. The lines represent the linear regression fits; the error bars are the s.e. 
from 1,000 bootstraps using 80% of the data in each. The cohort demographics 
can be found in Supplementary Table 1.
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Table 4). This included five Sst interneuron, one microglia, one Lamp5 
interneuron and one L2/3 IT supertype. Only oligodendrocytes had 
contradictory significant effect sizes (decreasing in both the MTG and 
A9 of SEA-AD and increasing in both ref. 13 and ref. 14) Effect sizes were 

consistently lower in these datasets, more than could be explained by 
using ADNC versus CPS alone (compared to Fig. 3b). The difference 
may relate to both studies having fewer donors with a high Braak stage 
(V and VI; >70% of their donors would lack pTau tangles in PFC) and to 

Coherent di�erences in supertype abundance changes along disease covariates in single-nucleus transcriptomics

Hierarchical machine learning-based mapping of SEA-AD nuclei to the BRAIN Initative taxonomy with expansion for nonneuronal cell types
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sampling fewer nuclei per donor, which limited the capture of each 
supertype consistently (roughly 30% of supertypes were missing in 
at least a quarter of donors compared to only 4% in SEA-AD) (Fig. 4f). 
Significant changes were only detected in supertypes present in at least 
75% of donors in all three studies (Fig. 4g), suggesting that this sparsity 
was particularly detrimental. Notably, some of the supertypes that were 

not replicated had nonsignificant effect sizes that were directionally 
consistent with SEA-AD, such as Sst_20.

Vulnerable Sst neurons in early AD
Nearly all vulnerable neuron supertypes were located in the upper 
(supragranular) cortical layers. Spatial transcriptomics revealed that 
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vulnerable supertypes from MGE-derived Sst+ and Pvalb+ subclasses are 
localized primarily to supragranular layers 2 and 3 (Fig. 5b,c). Other vul-
nerable neurons, including all CGE-derived interneurons (for example, 
Lamp5+, Vip+, Sncg+ and Pax6+ neurons) and L2/3 IT neurons were also 
only found in upper, supragranular layers (Fig. 5b and Extended Data 
Fig. 10c,d). Sst+ and Pvalb+ interneuron subclasses form a transcrip-
tional continuum (Fig. 5a, left); vulnerable Sst and Pvalb supertypes 
were as transcriptionally similar to each other as they were to other, 
unaffected supertypes within their respective subclasses (Fig. 5a, right 
and Extended Data Fig. 10a). Interestingly, hundreds of genes were 
selectively expressed in both vulnerable Sst and Pvalb supertypes, but 
not in unaffected supertypes from these subclasses (Extended Data 
Fig. 10b and Supplementary Table 7).

The typical morphoelectrical properties (that is, before disease 
onset) of the MGE supertypes were recently characterized using 
patch-seq profiling in neurosurgically resected tissues from human 
donors without AD21,22; the supragranular localization of vulnerable 
Sst and Pvalb interneurons was qualitatively confirmed. Vulnerable Sst 
supertypes had higher post-spike hyperpolarization (Sag) and lower 
membrane polarization time constants (Tau) compared to unaffected 
Sst supertypes (Fig. 5d, Extended Data Fig. 10e and Supplementary 
Table 8), differences not seen between vulnerable and unaffected Pvalb 
supertypes (Extended Data Fig. 10f,g). Hyperpolarization-activated 
cyclic nucleotide-gated 1 (HCN1) expression (HCN channel activity is 
involved in setting the Sag level) was higher in vulnerable Sst super-
types in both snRNA-seq and MERFISH in donors with AD (Fig. 5c,e,f). 
The vulnerable supertypes spanned a wide morphological range that 

includes non-Martinotti, sparse, basket, basket-like and double bou-
quet cells (Fig. 5g).

Vulnerable Sst supertypes showed specific molecular changes with 
AD. Unlike all other neuronal supertypes, they did not downregulate 
components of the ETC (Fig. 5h, red) and ribosomal genes (Fig. 5h, 
purple). Compared to unaffected Sst supertypes, the vulnerable Sst 
supertypes collectively downregulated specific kinases (from the 
tyrosine kinase56 and calcium2+/calmodulin-dependent kinase57 fami-
lies) (Fig. 5h, green) and E3 ubiquitin ligases (from the homologous 
to the E6-AP carboxyl terminus (HECT) family58) (Fig. 5h, blue). In 
contrast, vulnerable and unaffected Pvalb supertypes had no gene 
families affected differentially between them early in CPS (Extended 
Data Fig. 10h). Several notable genes were sharply downregulated 
early in CPS specifically in vulnerable Sst supertypes, including nerve 
growth factor (NGF) and genome-wide association study hit membrane 
metalloendopeptidase (MME) (Fig. 5i). The cognate receptor for NGF 
and NGFR is expressed specifically in oligodendrocytes and OPCs, 
suggesting potential disruption in communication with vulnerable 
Sst supertypes that may impact myelination59.

Microglia and astrocyte activation in early AD
Several cellular taxonomies for myeloid immune cells in the brain 
have been proposed using snRNA-seq data from healthy and diseased 
humans7,12,13. These taxonomies generally agree on three major types 
of brain myeloid lineage cells: monocytes, central nervous system 
(CNS)-associated macrophages (CAMs)/perivascular macrophages 
(PVMs) and a heterogenous group of microglia that has been difficult 

Fig. 4 | A9 single-nucleus data integration replicates MTG vulnerable 
populations with AD. a, Bar plots showing the fraction of donors in each publicly 
available snRNA-seq dataset harmonized in this study. Neuropathological stages 
(top) or possessing an APOE4 allele, dementia or a severe comorbidity (bottom). 
Gray boxes, unavailable metadata. Neuropathological staging included CERAD 
score, Braak stage and ADNC. All datasets applied snRNA-seq to the prefrontal 
cortex (PFC) in human donors that contained sporadic AD cases. Abs, absent; 
Spa, sparse; Mod, moderate; Freq, frequent. b, Scatter plots showing the relative 
study size, dataset depth and mean quality control metrics across publicly 
available snRNA-seq datasets (shown as blue dots) and SEA-AD (shown as a larger 
orange dot). c, Left, box-and-whisker plot showing the mapping confidence 
across datasets for each supertype. Right, box-and-whisker plot showing the 
Spearman correlation of each supertype’s signature score across all nuclei in 
each dataset compared to the SEA-AD. d, Scatter plot showing the uniform 
manifold approximation and projection (UMAP) coordinates computed from the 
integrated latent representation of cells and nuclei from the SEA-AD snRNA-seq  

dataset on A9 and each publicly available dataset color-coded according to 
dataset of origin (left) or subclass (right). e, Heatmap comparing the effect size 
of the relative abundance change of each supertype in A9 across CPS (SEA-AD) 
or ADNC (refs. 13,14), controlling for sex, age at death and race in the SEA-AD 
or sex, age and APOE4 status in refs. 13,14. Red indicates supertypes that were 
significantly changed in abundance across all three studies. The light gray 
dashed lines separate subclasses within cellular neighborhood; darker gray lines 
separate cellular neighborhoods. f, Box-and-whisker plots showing the fraction 
of donors that each supertype was captured in across all 11 integrated datasets. 
n as in c. n represents the total number of cells in each study dataset ordered as 
in the figure from top to bottom: 32,312, 11,020, 77,791, 77,631, 25,267, 44,514, 
28,064, 89,358, 1,502,282, 1,420,559, 1,330,571. g, Scatter plots relating the effect 
size for each supertype to the fraction of donors for which the supertype was 
captured in. No populations captured in less than 75% of profiled donors were 
detected as significant across all studies. The cohort demographics can be found 
in Supplementary Table 1.

Fig. 5 | Changes in superficial vulnerable MGE-derived inhibitory 
interneurons with common electrophysiological feature. a, UMAP 
coordinates for MGE interneurons color-coded according to supertype (left) 
or the effect size of the relative changes in abundance from scCODA along the 
CPS (right). b, Scatter plots relating the effect size of the changes in abundance 
to the cortical depth for each neuronal supertype. Each point indicates the 
MERFISH-derived mean depth of the supertype; the error bars indicate the 
s.d. n represents the total number of MERFISH cells with quantified cortical 
depth (n = 349,941). c, Example MERFISH data from early CPS (0.23), with cell 
locations and boundaries. Cortical layers are separated by the dashed gray 
lines. Vulnerable Sst neurons are indicated by pink-purple hues; unaffected 
neurons are indicated by green-blue hues. d, Left, electrophysiological traces 
showing post-spike membrane potential hyperpolarization over time (y axis) 
in vulnerable Sst neurons recorded from human donors without AD. Right, bar 
and swarm plot indicating the Sag distributions. A logistic regression test was 
used to identify the differential electrophysiological features (P = 4 × 10−6). 
The P values for the differential intrinsic features are shown in Supplementary 
Table 8. n represents the total number of Sst cells profiled using patch-seq 
(n = 209). e, Violin plots of HCN1 expression in Sst neurons in snRNA-seq (left) 
and MERFISH (right). The colored dashed lines represent the mean expression. 
ln(UP10K + 1), natural log of UMIs/10,000 + 1. log2(counts per million (CPM) + 1). 

The statistical test was a negative binomial regression implemented in Nebula 
as described in the Methods. f, Scatter plot of Sst cells indicating cell position 
and HCN1 expression level in an early CPS donor (0.23). Superficial Sst cells have 
higher HCN1 expression. g, Patch-seq-derived morphological reconstructions 
of vulnerable MGE-derived interneurons from donors without AD. Dendrites are 
colored according to supertype. h, Scatter plot relating the mean early effect 
size for genes in vulnerable versus unaffected Sst supertypes. Gene families with 
decreased expression in vulnerable types are shown in blue (ubiquitin ligases, 
P = 0.036) and green (kinases, P = 8.92 × 10−11). Gene families with decreased 
expression in unaffected types are shown in red (ETC, P value near 0) and purple 
(ribosomal proteins, P value near 0). The statistical test is a negative binomial 
regression implemented in Nebula and gene family enrichment tests as described 
in the Methods and Supplementary Note. Right, LOESS regression plots of mean 
gene expression for vulnerable (dark orange) and unaffected (light orange) 
Sst types and vulnerable (dark red) and unaffected (light red) Pvalb types. The 
center lines are the mean from the LOESS fits; uncertainly, lines represent the s.e. 
from 1,000 LOESS fits with 80% of the data randomly selected in each iteration. 
ln(UP10K + 1), natural log UMIs/10,000 + 1. i, LOESS regression plots as in h. NGF 
and MME gene expression decreased in vulnerable Sst supertypes. Center lines 
and error bars as in h. The cohort demographics can be found in Supplementary 
Table 1. g, Scale bar, 200 μm. Diff., difference; unaff., unaffected; vul., vulnerable.
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to reconcile across taxonomies. Comparing the SEA-AD microglial 
taxonomy (Fig. 6a) to the highly diverse one from ref. 13, revealed 
strong agreement across studies (Fig. 6b, top). Most notably, both tax-
onomies contained disease-associated types (micro-PVM_3 in SEA-AD 
and Mic.12 and Mic.13 in ref. 13), which were consistently increased in 
abundance with AD across datasets and have a common molecular 
signature (Fig. 6c). Also, both studies identified homeostatic, pro-
liferative and lipid-associated types60 (micro-PVM_4 in SEA-AD and 
Mic.6 and Mic.15 in ref. 13), and one other subtype with no functional 
data or tissue localization information. While the SEA-AD taxonomy 
is more conservative in splitting subtypes (with many one-to-many 
relationships to those with ref. 13), the same transcriptional continuum 
is captured in both datasets. Mathys et al.14 were even more conserva-
tive, describing only homeostatic and proliferative subtypes, despite 
their datasets containing other subtypes (Fig. 6b, bottom), such as a 
disease-associated microglia (DAM) subtype.

In addition to confirming the existence of DAMs in the SEA-AD 
dataset, broader molecular changes in microglia along the CPS were 
consistent with previous studies. Early changes included significant 
upregulation of gene sets involved in inflammatory processes (IL1B, 
CSF1R, STAB1, NINJ1, JAK3)61–65, interferon response (IRF1, IRF7, IFI16), 
Fc receptors (FCGR1A, FCGR1B, FCGR2A, FCGR3B), components of the 
class II major histocompatibility complex (MHC) (CD74, HLA-DRB5) and 
complement components (C1QA, C1QB) (Fig. 6d, top, red). Surprisingly, 
we also observed early upregulation of several homologs of genes 
induced by Aβ plaques in AD (CSF1R, CTSC, C1QA, C1QB, LY86, FCGR3A)66 
(Fig. 6d, top, blue). Other plaque-induced genes were upregulated 
later in CPS in donors with higher levels of pathology (Fig. 6d, bottom, 
blue), including more cathepsins (CTSD and CTSS) that may facilitate 
Aβ clearance67, the gene encoding lysozyme (LYZ) and APOE, which is by 
far the most strongly associated genetic risk factor for AD68. To identify 
the transcription factors driving early upregulation of proinflamma-
tory and plaque-induced genes, we used snATAC–seq data to construct 
microglial gene regulatory networks (GRNs). Four transcription factors 
(RUNX1, IKZF1, NFATC2, MAF) showed specific microglial expression 
and were upregulated early in CPS (Fig. 6e, left). These transcription 
factors are predicted to coregulate 201 genes, including genes noted 
above (Fig. 6e, right and Fig. 6f).

Astrocytes have been ascribed diverse roles in AD 
pathophysiology69, which makes understanding their molecular 
subtypes crucial. The SEA-AD taxonomy encompasses interlaminar, 
protoplasmic, fibrous and a yet-to-be-described astrocyte supertype 
(Fig. 6g). In contrast (Fig. 6h, top), Green et al.13 split protoplasmic 
astrocytes into several subtypes, grouped interlaminar astrocytes into 
one subtype and found few fibrous astrocytes (Fig. 6i). In both MTG and 
A9 datasets, protoplasmic astrocytes (Astro_2) specifically increased 
early in CPS. While this association could not be replicated in ref. 13 or 
ref. 14, their original manuscript noted an increase in one protoplasmic 

subtype (Ast.10) with AD. This suggests agreement that at least a subset 
of astrocytes is increased with disease. Mathys et al.14 had the fewest 
types, with one subtype for protoplasmic astrocytes, one subtype 
for fibrous and interlaminar astrocytes together, and one unknown 
subtype that was also similar to a type we identified (Fig. 6h, bottom).

Next, we sought to describe the early and late molecular changes 
occurring in astrocyte supertypes. Early changes included upregu-
lation of cellular adhesion molecules (CADM1, CDRH3, PCDHGA1, 
PCDHB14, PCDHB16, CLSTN1, ITGA6, NEO1, ANOS1) and neuronal 
guidance cues (NLGN3, NTRK3, SEMA4B, NTNG2), signaling receptors 
(PTCHD1, NRP1, BMPR2, UNC5C)70 and GFAP, a known hallmark of AD 
and astrogliosis71 (Fig. 6j, top). Later in CPS, astrocytes continue to 
upregulate molecules involved in cellular adhesion, axonal guidance 
and signaling receptors, including NCAM2 and CERCAM, additional 
hedgehog signaling receptors (PTCHD4, PTCH2, SMO) and their 
downstream target transcription factor GLI1, and both the epidermal 
growth factor ligand and its receptor (Fig. 6j, bottom). Astrocytes also 
downregulated APOE (Fig. 6k). Collectively, these molecular changes 
suggest a highly stimulatory extracellular environment occurring 
early in disease, even in donors with relatively low levels of pathology.

Oligodendrocyte loss and remyelination by OPCs
Dysfunction of oligodendrocytes and myelin breakdown may be early 
events in AD72–75. Among oligodendrocytes, two supertypes (Oligo_2 and 
Oligo_4) were vulnerable early in both MTG and A9 (Fig. 7a); both super-
types are found throughout the cortical column in the BRAIN Initiative 
reference dataset18. CNP was expressed in both (albeit higher in Oligo_4) 
(Fig. 7b), suggesting they are myelinating oligodendrocytes. We also 
observed a late decrease in one OPC supertype (OPC_2), which is found 
across cortical layers 2 through 6. When compared against publicly 
available datasets, SEA-AD oligodendrocytes and OPCs largely agreed 
with the fine-grained types described in ref. 13, with most supertypes 
having one-to-one or one-to-many relationships (Fig. 7c).

The mean expression of genes implicated in Aβ synthesis in oli-
godendrocytes (BACE1, BACE2, PSEN1, PSEN2, APH1A, NCSTN15) was 
replicated in the SEA-AD data (Fig. 7d), with oligodendrocytes having 
the highest levels of both APP and PSEN1. Therefore, the early loss 
of oligodendrocytes may be attributed to these higher levels of Aβ 
molecules that have known cytotoxicity. Additionally, there is an early 
upregulation of a gamma-secretase component (NCSTN), the tran-
scription factor MYRF, which regulates myelination76, and a structural 
component of myelin itself (PLLP) (Fig. 7e, left, and Fig. 7g). Significant 
increases in expression of the cholesterol biosynthesis gene family, a 
proposed key process in AD etiology77, occur later in CPS (DHCR24, 
LBR, FDFT, HSD17B1, SC5D, CYP51A1, SQLE, and DHCR7) (Fig. 7e, mid-
dle, and Fig. 7g). Furthermore, late in CPS there is downregulation 
of MYRF and several components of myelin and myelination (MOBP, 
MOG, OMG, PLLP, OPALIN). The late change in both gene sets suggests 

Fig. 6 | Early microglial and astrocyte activation compared across publicly 
available datasets. a, Scatter plot showing the UMAP coordinates for MTG 
micro-PVM supertypes, colored according to supertype identity. Red, disease-
associated microglial state. b, Heatmaps showing confusion matrices comparing 
microglial annotations in refs. 13,14 with the SEA-AD cellular taxonomy. Red, 
SEA-AD supertypes significantly increased in all datasets. c, Heatmap showing 
the mean z-scored expression across microglial supertypes of marker genes 
identified using Nebula. d, Scatter plot relating the mean effect size of each 
gene across microglial supertypes in the early versus late epochs along the 
CPS. The gray dashed lines denote effect sizes of 1 and −1. The statistical test 
was a negative binomial regression implemented in Nebula, together with gene 
family enrichment tests as described in the Methods and Supplementary Note. 
e, Left, scatter plot relating transcription factor mean z-scored gene expression 
identified by the GRNs versus the effect size in the early disease epoch along the 
CPS. Right, cumulative density plot depicting the effect sizes in the early disease 
epoch along the CPS of the genes downstream of the transcription factors 
identified based on the GRNs (left, in blue) versus the effect sizes of all other 

genes (yellow). f, LOESS regression plots relating the mean expression of the 
indicated genes from families noted in d to CPS across nonneuronal supertypes 
organized and colored according to subclass; ln(UP10K + 1), natural log UMIs per 
10,000 + 1. g, Scatter plot showing the UMAP for the MTG astrocyte supertypes 
colored according to supertype identity. Red, disease-associated protoplasmic 
astrocyte supertype. h, Heatmaps showing the confusion matrices comparing 
the annotations of astrocyte cells in the studies in refs. 13,14, with the same cells 
annotated with the SEA-AD cellular taxonomy. i, Heatmap showing the mean 
z-scored expression across astrocyte supertypes of marker genes identified by 
Nebula. j, Scatter plot relating the mean effect size of each gene across astrocyte 
supertypes in the early (x axis) versus late (y axis) epochs along the CPS. The gray 
dashed lines denote effect sizes of 1 and −1. k, Same LOESS regression plots as in 
f for the strongly disease-associated APOE gene, which decreased in expression 
in astrocytes and increased in expression in microglia in the late disease epoch 
along the CPS. The cohort demographics can be found in Supplementary Table 1. 
TF, transcription factor.
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that they may represent a reaction to pathology rather than an early 
driver of dysfunction.

In OPCs, there was early upregulation of several transcription 
factors (OLIG1, OLIG2, SOX10, SOX8, PRRX1, ASCL1) and Notch ligands 
(DLL1, DLL3) known to regulate differentiation78–81 to oligodendrocytes 
after loss of surrounding oligodendrocytes (Fig. 7e, right, and Fig. 7g). 
Because of the overwhelming number of transcription factors involved 
in differentiation that changed early, we queried our OPC-specific GRN 
and identified 317 genes downstream of these factors (Fig. 7f, left). 
These genes were also upregulated early (Fig. 7f, right) compared to all 
other genes, and were predominantly involved in OPC differentiation. 
Next, we examined the expression of two signaling pathways that are 
important for OPC differentiation to oligodendrocytes: insulin-like 
growth factor (IGF)82 and platelet-derived growth factor (PDGF)83. 
While expression of PDGF genes spanned several cellular subclasses, 
expression of IGF was restricted to inhibitory interneurons and a small 
subset of microglia (Fig. 7h). IGF1 expression decreased later in CPS 
in several inhibitory interneuron populations, suggesting that these 
inhibitory populations may be the main source of IGF1 and the driver 
of changes in myelination (Fig. 7i).

Discussion
We describe an integrated atlas of AD in the MTG, selected both as a 
transition area in AD pathology4 and the region with the greatest aggre-
gated knowledge about cell type phenotypes20–22. The atlas illustrates 
the utility of the BICCN reference as a unifying framework to map cell 
types at high resolution, incorporate cell types and states not included 
in the reference, and replicate results. The core results presented in 
this article were replicated across data modalities, cortical regions and 
datasets from independent studies. The results demonstrate the value 
of this integration in defining a robust and specific series of cellular 
and molecular events that show what cells are affected, where they 
are (co)localized and when these events happen as disease pathology 
increases. All data presented are publicly accessible through a suite of 
data resources available through SEA-AD (https://portal.brain-map.
org/explore/seattle-alzheimers-disease).

Modeling disease severity using pseudotrajectory analyses based 
on a quantitative local neuropathological burden was highly success-
ful and increased effect sizes beyond aggregate scores like Braak4, 
Thal3, CERAD84 and ADNC39. These measure distribution of pTau, aβ 
and neuritic plaques, but rely on binary present or absent scores that 
do not capture the level of pathology in any given brain region. This 
pseudotrajectory was driven by AD phenotypes and captured two 
major epochs in AD progression (Fig. 8), including an early phase with 
slowly increasing neuropathology and a late phase with exponentially 
increasing neuropathology, culminating in the terminal state observed 

for severely affected donors. In the early epoch, donors had sparse Aβ 
plaques (albeit increasing in size) and pTau+ tangle-bearing neurons, 
accompanied by early increases in inflammatory or reactive microglial7 
and astrocytic states69 and associated gene expression changes in rel-
evant inflammatory85 and plaque-induced genes (Fig. 8b). This epoch 
also features losses of oligodendrocytes and a dramatic increase in 
OPC differentiation and remyelination factors that may represent a 
compensatory response like that seen in models of oligodendrocyte 
loss86,87. Neuronal cells exhibited loss of particular Sst interneuron 
types that downregulate kinases and E3 ubiquitin ligases, but not the 
ETC and ribosomal pathways (which were downregulated in other 
neuronal populations) (Fig. 8b). These vulnerable Sst supertypes 
were localized to superficial cortical layers, whereas deeper-layer 
Sst supertypes were unaffected (Fig. 8a), and exhibited distinctive 
electrophysiological properties, such as higher Sag, compared to 
unaffected supertypes. These neurons are lost earlier than L2/3 IT 
excitatory types, which bear the highest Tau burden in the cortex46, 
suggesting high pathological susceptibility and an initial event of 
circuit dysfunction. Sst interneurons have been implicated in AD53,55, 
but not at the same molecular, morphological and electrophysiological 
level, which was achieved, in part, by our neuronal enrichment strategy 
(harnessing fluorescence-activated nuclei sorting (FANS) to enrich 
neuronal populations). Severely affected donors exhibited a decrease 
in NeuN immunostaining, raising some concern that the use of NeuN 
as a neuronal marker in our FANS protocol could have biased cellular 
proportions across donors as a function of AD pathology if some neu-
ronal types lost NeuN labeling disproportionately. However, this is 
unlikely as our main findings were replicated in an additional cortical 
region, an orthogonal technology (MERFISH) and in publicly available 
datasets that did not enrich for neurons13,14.

What might be the consequences of an early loss of Sst neurons? 
Loss of inhibitory neurons would naturally be expected to disrupt 
excitatory and inhibitory balance; impaired inhibition may therefore 
increase the susceptibility of patients with AD to epilepsy, a clinical 
symptom found in more than 10% of patients88. This is supported 
by previous observations highlighting an antiepileptic role of Sst+ 
interneurons89, and our observation that susceptible inhibitory 
interneurons express a high level of the HCN1 channel, whose dys-
function has been linked to several epileptogenesis pathways and 
the generation of hyperexcitability90. From a circuit perspective, Sst 
interneurons are uniquely positioned to exert control over both excita-
tion and inhibition in the cortex as they target excitatory and all other 
subclasses of inhibitory cortical neurons, but not themselves91. They 
also participate in a powerful disinhibitory loop via reciprocal connec-
tions with the Vip subclass92. Furthermore, they mediate the effects of 
arousal in cortical circuits92 under the effects of acetylcholine, which 

Fig. 7 | Early loss of oligodendrocytes with a remyelination program in 
OPCs across publicly available datasets. a, Scatter plots showing the UMAP 
coordinates for MTG oligodendrocyte and OPC supertypes, colored according 
to supertype identity. b, Heatmap showing the mean z-scored expression across 
oligodendrocyte (left) and OPC (right) supertypes of marker genes identified by 
Nebula. c, Heatmaps showing confusion matrices comparing oligodendrocyte 
and OPC annotations in refs. 13,14 with the SEA-AD taxonomy. Red, SEA-AD 
supertypes that were significantly increased in AD in these datasets. Red and 
blue also denote cell types that were associated or vulnerable with disease in the 
original studies. d, Box-and-whisker plot showing the mean expression (natural 
log UMIs per 10,000 + 1) of beta and gamma-secretase components and the APP 
gene organized according to subclass. The center lines denote the median; the 
error bars are 1.5 times the IQR. Outliers are not shown. e, Scatter plot relating 
the mean effect size of genes across the oligodendrocyte and OPC supertypes in 
the early versus late epochs. Significant genes involved in fatty acid biosynthesis 
(left) or cholesterol biosynthesis (middle, P = 0.0040 late) are color-coded red; 
myelin components (P = 0.006 late) are color-coded blue. Significant genes in the 
OPC early phase (right) that are part of the remyelination program (P = 9.62 × 10−5 
early) are color-coded blue. The statistical test used was a negative binomial 

regression implemented in Nebula; gene family enrichment tests were carried 
out as described in the Methods and Supplementary Note. f, Left, scatter plot 
relating transcription factor mean z-scored gene expression identified by GRNs 
versus their effect size in the early disease epoch along the CPS. Right, cumulative 
density plot depicting the effect sizes in the early disease epoch of genes 
downstream of the transcription factors identified (left) based on the GRNs 
(blue) versus the effect sizes all other genes (yellow). n represents the number of 
OPCs, n = 28,429. g, LOESS regression plots relating the mean expression of the 
indicated genes from the families in e to the CPS, colored according to subclass. 
ln(UP10K + 1), natural log UMIs per 10,000 + 1. h, Dot plot depicting the mean 
gene expression and fraction of cells in each group with nonzero expression in 
the SEA-AD MTG dataset organized according to the subclasses for the genes 
indicated. Expression is natural log UMIs per 10,000 + 1. The statistical test was 
negative binomial regression implemented in Nebula; gene family enrichment 
tests were used as described in the Methods and Supplementary Note. i, LOESS 
regression relating the mean expression of IGF1 to CPS, color-coded by inhibitory 
(left), excitatory (middle) and nonneuronal (right) subclasses. The cohort 
demographics can be found in Supplementary Table 1.
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is also highly disrupted early in AD through the loss of cholinergic 
neurons in the basal forebrain93. Thus, reduction in numbers of Sst 
neurons probably has wide-ranging consequences beyond reduced 
network stability, affecting cognitive processes that rely on proper 
interactions in distributed brain areas. Finally, it is possible that Sst 
neuron loss could also disrupt trophic support of connected neurons94, 
ultimately leading to the loss of long-range corticocortical connectivity 
that would be expected to affect cognitive function.

In the later epoch, there is an exponential rise in Aβ and pTau 
pathology, continued increases in inflammatory microglia and astro-
cyte states, and a decrease in the expression of both the OPC differen-
tiation program and oligodendrocyte expression of myelin-associated 
proteins (previously characterized using quantitative PCR95). There is 
also broader loss of excitatory (L2/3 IT) and inhibitory (Pvalb and Vip) 
neurons (Fig. 8b). Vulnerable neuron types are specific, including a 
subset of the supertypes within each broader subclass, and are largely 
localized to the upper layers of the cortex (Fig. 8a). For example, there 
was a selective loss of excitatory neurons in the supragranular layers 
(L2/3 IT)9,54.

Putting these two epochs together, the overall progression sug-
gests a sequence of events in which early microglial activation at low 
levels of pathology triggers reactive astrocytes and potentially oligo-
dendrocyte loss96. Furthermore, the early loss of Sst neurons in the 

upper cortical layers could lead to excitatory and inhibitory circuit 
imbalance (Fig. 8b) that could in turn lead to loss of other colocalized 
(and thus probably connected) excitatory and inhibitory neurons, 
including long-range corticocortical (L2/3 IT) neurons that contrib-
ute to cognitive decline. Donors with the steepest memory cognitive 
decline late in life showed particularly broad cellular dysfunction, 
suggesting that this was not due to poor quality samples but rather a 
biological outcome of AD pathology and subsequent cognitive decline. 
These severely affected donors had lower transcription and reduced 
chromatin accessibility that may correspond to senescent states97, or 
global epigenome dysregulation that is indicative of cell identity loss98.

The results presented in this study in the MTG demonstrate that 
systematic application of single-cell genomic and spatial technolo-
gies coupled with quantitative neuropathology can effectively model 
disease progression across the spectrum of AD severity. Importantly, 
the BICCN reference allows the integration and direct comparison 
across many studies to use common annotation of the same cell types 
and states, and to cross-validate results to demonstrate their robust-
ness and consistency.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Fig. 8 | MTG cells impacted by AD, predominantly localizing to superficial 
layers, can be organized into two epochs: an early and a late phase.  
a, Diagram illustrating cortical columns with actual neuronal reconstruction 
from vulnerable populations (from donors without AD) organized according to 
early (top) and late (bottom) disease epochs. During the early epoch, superficial 
Sst, Sncg and Lamp5 interneurons were lost. In the late epoch, most lost neurons 
localized superficially (L2/3 IT, Pvalb and Vip), with the addition of deep cortical 
and striatum-projecting L5 IT neurons. b, First box, the dynamic changes 
associated with AD progression can be organized into early and late epochs. 
In the early epoch, the first neuropathological event is an increase in the size 
of sparse Aβ plaques, subsequently followed by an exponential aggregation of 
both pTau and plaque burden. A decrease in NeuN+ cells occurs throughout. 
Second box, supragranular interneurons (Sst, Sncg, Lamp5) are lost early on. 

During this period, genes encoding the ETC complex, and ribosomal proteins, 
are downregulated broadly across neurons, except in the vulnerable Sst 
interneurons. In the latter cells, there is a strong downregulation of ubiquitin 
ligases and kinases. Later on, not only inhibitory cells (Pvalb and Vip) are  
lost but also long-range-projecting pyramidal neurons (L2/3 IT and  
L5 IT). Third and fourth boxes, nonneuronal cells accompany these changes with 
the early emergence of DAMs and an increase in protoplasmic astrocytes, while 
myelinating oligodendrocytes decrease their abundance. Concurrently, DAMs 
upregulate inflammatory and plaque-inducing genes, while OPCs attempt to 
compensate for oligodendrocyte loss by upregulating their OPC differentiating 
genes. Later, OPC cells are impacted and lost while myelination genes in 
oligodendrocytes are downregulated. The cohort demographics can be found in 
Supplementary Table 1. Schematics created using Biorender.com.
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Methods
SEA-AD cohort selection
Postmortem brain tissue and donor metadata were obtained via the 
UW BioRepository and Integrated Neuropathology (BRaIN) labora-
tory from participants in the Kaiser Permanente Washington Health 
Research Institute ACT Study and the University of Washington ADRC. 
In compliance with all ethical standards, informed consent for research 
brain donation was obtained according to protocols approved by the 
UW and Kaiser Permanente Washington Health Research Institute 
Institutional Review Boards. ACT participants receive compensation 
for parking and transportation and an incentive of US$50 after complet-
ing each study visit. Work at the Allen Institute received a regulatory 
determination of non-human subject research. The study cohort was 
selected based solely on donor brains undergoing precision rapid 
procedure (optimized tissue collection, slicing and freezing) during 
an inclusion time period at the start of the SEA-AD study, excluding 
those with a diagnosis of frontotemporal lobar degeneration, Down 
syndrome, amyotrophic lateral sclerosis or other confounding degen-
erative disorder (not including Lewy body disease, limbic-predominant 
TDP-43 encephalopathy or microvascular brain injury). The cohort was 
chosen in this manner to represent the full spectrum of AD neuropa-
thology, with or without common comorbid age-related pathologies. 
No randomization was used in cohort selection. Unless otherwise speci-
fied, the experimental donor cohort contains 84 donors, 51 females 
and 33 males, aged 65–102 (mean 88). See Supplementary Table 1 for 
a breakdown of the specific donors included in each experiment.

Single and duplex IHC for quantitative neuropathology
The STG-MTG tissue blocks were sectioned (cut at 5 μm), deparaffinized 
by immersion in xylene for 3 min three times. Then, they were rehy-
drated in graded ethanol (100%, 3×, 96%, 70% and 50% for 3 min each) 
and washed with Tris-buffered saline with 0.25% Tween-20 (TBST) twice 
for 3 min. The slides were immersed in Diva Decloaker 10X solution 
(cat. no. DV2004, Biocare Medical) for heat-induced epitope retrieval 
using the Decloaking Chamber at 110 °C for 15 min for most of the anti-
bodies. To detect the α-synuclein protein, enzymatic antigen retrieval 
with protein kinase (cat. no. AR551, Leica Biosystems) was used. After 
heat-induced epitope retrieval was completed, the slides were cooled 
for 20 min at room temperature. Afterward, slides were washed with 
TBST for 5 min twice.

Chromogenic staining was performed using the fully automated 
intelliPATH (Biocare Medical). Blocking with 3% hydrogen peroxide 
(cat. no. PX968, Biocare Medical), Bloxall (Vector Laboratories), Back-
ground Punisher (Biocare Medical) and levamisole (Vector Laborato-
ries) was performed to avoid any cross-reactivity and background. The 
following primary antibodies were used for the first target protein at 
the dilutions indicated: NeuN (1:500, clone A60, mouse, MAB5374, 
Merck Millipore), pTDP-43 (1:1,000, Ser409/410, clone ID3, rat, cat. 
no. 829901, BioLegend), β-amyloid (1:1,000, clone 6E10, mouse, cat. 
no. 803003, BioLegend), α-synuclein (1:200, clone LB509, mouse, cat. 
no. 180215, Invitrogen) and GFAP (1:1,000, rabbit, cat. no. Z033401-2, 
DAKO). After incubation with primary antibodies, sections were washed 
four times for 2 min with TBST and stained with species-appropriate 
secondary probe or antibody with a polymer horseradish peroxidase 
(HRP) (manufacturer’s proprietary dilution, MACH 3 mouse (cat. no. 
M3M530) and MACH 3 rabbit (cat. no. M3R531), Biocare Medical; manu-
facturer’s proprietary dilution, ImmPRESS goat anti-rat IgG (cat. no. 
MP-7444), Vector Laboratories). Sections were washed two times for 
2 min with TBST; the antibody complex was visualized after 3–7 min by 
HRP-mediated oxidation of 3,3′-diaminobenzidine (DAB) (intelliPATH, 
cat. no. IPK5010) by HRP (brown precipitate). Counterstaining was done 
with hematoxylin after the DAB reaction.

In duplex IHC (6E10/IBA1 and AT8/pTDP-43), slides were washed 
for 22 min in TBST and then incubated with primary antibodies at the 
dilutions indicated after the DAB reaction: IBA1 (1:1,000, rabbit, cat. no. 

019-19741, Wako) and pTau (1:1,000, clone AT8, mouse, cat. no. MN1020, 
Thermo Fisher Scientific). They were washed as above and stained with 
species-appropriate secondary polymers conjugated to an alkaline 
phosphatase (MACH 3 mouse (cat. no. M3R532), MACH 3 rabbit (cat. 
no. M3R533), Biocare Medical). The complex was then visualized with 
the intelliPATH Ferangi Blue Chromogen Kit (cat. no. IPK5027, Biocare 
Medical; blue precipitate). Once staining was completed, the slides 
were removed from the automated stainer and immersed in TBST for 
3 min, then dehydrated in graded ethanol (70%, 96%, 100%, 2×) for 3 min 
and xylene (or xylene substitute in the case of duplex IHC), three times 
each for 3 min. Finally, coverslipping was carried out with a Tissue-Tek 
automated cover slipper (Sakura Finetek) using the Ecomount medium 
(cat. no. EM897L, Biocare Medical).

Creation of the CPS
Our quantitative neuropathological data, Xm,l

d , was measured as  
d = 1… D = number of donors, in l = 1… L cortical layers and m = 1… M 
distinct neuropathological measurements. To estimate a CPS of patho-
logical severity in MTG for each brain donor, we created a latent Bayes-
ian statistical model. We assigned to each donor a latent variable, 
termed td ∈ [0, 1], representing CPS. In addition, we proposed to infer 
the most probable donor permutation π  to facilitate latent space explo-
ration. As described in the main text, the observation model has a mean 
value dictated by the exponential biophysical dynamics μ = eklmtd+a

l
m, 

where klm and al
m are the per-layer and per-quantifiable neuropathologi-

cal measurement dynamic parameters representing rise time and initial 
condition, respectively. We assumed that our data were corrupted with 
observational noise described with a Poisson distribution. We imposed 
Bayesian priors on this model and obtained the following hierarchical 
Bayesian generative statistical model:

π ∼ Uniform(π)

t ∼ Uniform(Partition Simplex)

am, km ∼ Normal(0, 1)

al
m ∼ Normal(am, 1)

klm ∼ Normal(km, 1)

Xm,l
d ∼ Poisson(eklmtπ(d)+al

m )

in which the symbol ~ indicates that we are taking draws from a distribu-
tion. The hierarchical nature of this model enables ‘borrowing informa-
tion’ across layers; for each measurement, the layer-specific parameters 
klm and al

m are sampled from their population parameters km and am.
We performed approximate Bayesian inference in this model to 

obtain draws from an approximate posterior distribution given the 
model and the underlying priors for a, k, π and t. Our inferential strat-
egy is based on a Gibbs block coordinate sampler where we iteratively 
sampled from each block of variables (t, π or (a, k)) conditioned on 
the others being fixed. To sample an element t of the simplex that we 
unequivocally associated with an increasing sequence of times fixed, 
we used the sampler described in ref. 99. To sample permutations of 
π, we resorted to the parametric Gumbel-Sinkhorn family of distribu-
tions over permutations100 to approximate the otherwise intractable 
conditional distribution (hence, our method was approximate). Finally, 
to sample the model parameters (a, k) we used Stan (v.2.34) with 1,000 
burn-out iterations and collected samples from multiple chains. After 
the initial burned-out samples, we iterated through this procedure.

Tissue processing for single-nucleus isolations
Cortical areas of interest were identified on tissue slab photographs 
taken at the time of autopsy and at the time of dissection using the 
Allen Human Reference Atlas as a guide for region localization. MTG 
was sampled at the level of first appearance of the lateral geniculate 
nucleus corresponding to the intermediate subdivision of area (A) 21. 
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A9 was sampled in tissue slabs anterior to the first appearance of the 
corpus callosum within the superior frontal gyrus (SFG) correspond-
ing to the rostrodorsal portion of the PFC (A9 (ref. 101)). Tissue blocks 
encompassed the full height of the cortex from the pia to the white mat-
ter (~5 mm) and were ~2–3 mm wide and 4 mm thick. To dissect regions 
of interest, tissue slabs were removed from storage at −80 °C, briefly 
transferred to a −20 °C freezer to prevent tissue shattering during dis-
section and then handled on a custom cold table maintained −20 °C 
during dissection. Dissections were performed using dry-ice-cooled 
razor blades or scalpels to prevent warming of tissues. Photographs 
were taken before and after each dissection to document the precise 
location of each resected tissue block. Dissected tissue samples were 
then transferred to vacuum seal bags, sealed and stored at −80 °C until 
the time of use. Single-nucleus suspensions were generated using a pre-
viously described standard procedure (https://www.protocols.io/view/ 
isolation-of-nuclei-from-adult-human-brain-tissue-ewov149p7vr2/v2).  
Briefly, after tissue homogenization, isolated nuclei were stained with 
a primary antibody against NeuN (FCMAB317PE, Sigma-Aldrich) to 
label neuronal nuclei. Nucleus samples were analyzed using a BD FAC-
SAria flow cytometer (software BD Diva v.8.0, BD Biosciences); nuclei 
were sorted using a standard gating strategy to exclude multiplets24 
(Supplementary Table 1). A defined mixture of neuronal (70% from 
the NeuN+ gate) and nonneuronal (30% from the NeuN− gate) nuclei 
was sorted for each sample. Nuclei isolated for 10X Genomics v.3.1 
snRNA-seq were concentrated by centrifugation after FANS, and were 
frozen and stored at −80 °C until later chip loading. Nuclei isolated 
for 10X Genomics Multiome and 10X Genomics Single Cell ATAC v.1.1 
were concentrated by centrifugation after FANS and were immediately 
processed for chip loading.

Isolation of RNA and determination of RIN from frozen human 
brain tissue
To assess RNA quality, three tissue samples (roughly 50 mg each) were 
collected from the tissue slab corresponding to the frontal pole of 
each donor brain. Tissue samples were collected from three differ-
ent regions of the tissue slab to assess within-slab variability in RNA 
quality. Dissected tissues were stored in 1.5-ml microcentrifuge tubes 
on dry ice or in −80 °C until the time of RNA isolation. Tissue samples 
were homogenized using a sterile Takara BioMasher (cat. no. 9791A). 
RNA isolation was performed using a QIAGEN RNeasy Plus Mini Kit 
(cat. no. 74134) or a Takara NucleoSpin RNA Plus kit (cat. no. 740984) 
according to the manufacturer’s protocol. RIN values for each sample 
were determined using the Agilent RNA 6000 Nano chip kit (cat. no. 
5067-1511) and an Agilent Bioanalyzer 2100 instrument according to 
the manufacturer’s protocol.

10X genomics sample processing
10X Genomics chip loading and postprocessing of the emulsions to the 
sequencing libraries were done with the Chromium Next GEM Single 
Cell 3′ Gene Expression v.3.1, Chromium Next GEM Single Cell ATAC v.1.1 
and Chromium Next GEM Single Cell Multiome ATAC Gene Expression 
kits according to the manufacturer’s guidelines. Nuclei concentration 
was calculated either manually using a disposable hemocytometer 
(DHC-NO1, INCYTO) or using the NC3000 NucleoCounter.

10X sequencing and preprocessing
All 10X libraries were sequenced according to the manufacturer’s speci-
fications on a NovaSeq 6000 using either a NovaSeq X or S4 flow cell. 
Reads were demultiplexed to FASTQ files using BCL Convert (v.4.2.7) for 
libraries run on NovaSeq X flow cells and bcl2fastq (v.2-20-0) for librar-
ies run on S4 flow cells. Reads from snRNA-seq libraries were mapped 
to the 10X Genomics official human reference (GRCh38-2020-A); UMIs 
per gene were counted using the Cell Ranger (v.6.1.1) pipeline with the 
--include--introns parameter included. Reads from the snATAC–seq 
and snMultiome libraries were mapped to the same reference using 

Cellr Anger ATAC (v.2.0.0) and Cell Ranger Arc (v.2.0.0) pipelines, 
respectively, with default parameters.

Comparing the peak universes of severely affected donors to 
other high pathology donors
We used the ChromA102 Python package (https://github.com/mari-
anogabitto/ChromA, v.2.1.2) with default parameters on fragment files 
from each donor individually to call a set of donor-specific peaks. As 
part of this procedure, peaks are filtered by whitelisted regions existing 
in 10X Cell Ranger ATAC.

All peak sets were then combined using concatenation. They were 
then subjected to fusion, that is, if two peaks shared a 10% overlap, their 
coordinates would be merged using the default BEDTools103 merge 
mode. ChromA was used to then compute counts by peaks matrices 
for each donor using the peak set defined above using fragment and 
peak files as inputs.

Spatial transcriptomics data collection
Human postmortem frozen brain tissue was embedded in optimal cut-
ting temperature medium (cat. no. 25608-930, VWR) and sectioned on 
a Leica cryostat at −17 °C at 10 μm onto Vizgen MERSCOPE coverslips. 
These sections were then processed for MERSCOPE imaging accord-
ing to the manufacturer’s instructions. Briefly, sections were allowed 
to adhere to these coverslips at room temperature for 10 min before a 
1-min wash in nuclease-free PBS and fixation for 15 min in 4% paraform-
aldehyde in PBS. Fixation was followed by three 5-min washes in PBS 
before a 1-min wash in 70% ethanol. Fixed sections were then stored in 
70% ethanol at 4 °C before use and for up to 1 month. Human sections 
were photobleached using a 240 W LED array for 72 h at 4 °C (with 
temperature monitoring to keep samples below 17 °C) before hybridi-
zation, and then washed in 5 ml Sample Prep Wash Buffer (cat. no. 
20300001, Vizgen) in a 5-cm Petri dish. Sections were then incubated 
in 5 ml Formamide Wash Buffer (cat. no. 20300002, Vizgen) at 37 °C for 
30 min. Sections were hybridized by placing 50 μl of Vizgen Gene Panel 
Mix onto the section, covering with parafilm and incubating at 37 °C 
for 36–48 h in a humidified hybridization oven. After hybridization, 
sections were washed twice in 5 ml Formamide Wash Buffer for 30 min 
at 47 °C. Sections were then embedded in acrylamide by polymeriz-
ing Vizgen Embedding Premix (cat. no. 20300004) according to the 
manufacturer’s instructions. Sections were embedded by inverting sec-
tions onto 110 μl of Embedding Premix and 10% ammonium persulfate  
(cat. no. A3678, Sigma-Aldrich) and TEMED (cat. no. 161-0800, Bio-Rad 
Laboratories) solution applied to a Gel Slick (cat. no. 50640, Lonza) 
treated 2×3 inch glass slide. The coverslips were pressed gently onto the 
acrylamide solution and allowed to polymerize for 1.5 h. After embed-
ding, sections were cleared for 24–48 h with a mixture of Vizgen Clear-
ing Solution (cat. no. 20300003) and proteinase K (cat. no. P8107S, 
New England Biolabs) according to the manufacturer’s instructions. 
After clearing, sections were washed two times for 5 min in Sample Prep 
Wash Buffer (cat. no. 20300001). Vizgen 4′,6-diamidino-2-phenylindole 
(DAPI) and PolyT Stain (cat. no. 20300021) was applied to each section 
for 15 min followed by a 10-min wash in Formamide Wash Buffer. Forma-
mide Wash Buffer was removed and replaced with Sample Prep Wash 
Buffer during the MERSCOPE setup. then, 100 μl of RNase Inhibitor 
(cat. no. M0314L, New England BioLabs) was added to 250 μl Imaging 
Buffer Activator (cat. no. 203000015); this mixture was added via 
the cartridge activation port to a pre-thawed and mixed MERSCOPE 
Imaging cartridge (cat. no. 1040004, Vizgen). Then, 15 ml mineral oil 
(cat. no. m5904-6X500ML, Sigma-Aldrich) was added to the activation 
port and the MERSCOPE fluidics system was primed according to the 
instructions provided by Vizgen. The flow chamber was assembled 
with the hybridized and cleared section coverslip according to the 
specifications provided by Vizgen; the imaging session was initiated 
after collection of a 10X mosaic DAPI image and selection of the imag-
ing area. Specimens were imaged and automatically decoded into 
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transcript location data and a cell-by-gene table. All postprocessing and 
segmentation was completed using the vizgen-postprocessing docker 
container v.0.0.5 (https://github.com/Vizgen/vizgen-postprocessing). 
For each section, segmentation was run on a single z-plane (z = z3). 
Segmentation was a combination of cellpose-cyto2 2D segmentation 
(with contrast-limited adaptive histogram equalization and normal-
ized DAPI and PolyT images as inputs) and cellpose nuclei-only seg-
mentation (using contrast-limited adaptive histogram equalization 
and normalized DAPI images only). Results were then fused using the 
harmonize strategy and returned as cell metadata summary files and 
parquet mosaic geometry files. If segmentation failed on the z = z3 
image plane, z = z4 image data were used instead.

Compositional analysis of supertypes
To model changes in the composition of cell types as a function of 
CPS and other covariates, we used the Bayesian method scCODA104 
(v.0.1.7). We tested compositional changes in neuronal and nonneu-
ronal nuclei separately because they were sorted to have a defined ratio 
(70% neuronal nuclei, 30% nonneuronal nuclei in each donor). To do 
this, we created separate AnnData objects of neuronal and nonneuronal 
nuclei with supertype annotations, sequencing library IDs and relevant 
donor-level covariate information (noted below) for all snRNA-seq and 
snMultiome nuclei formatted as per https://sccoda.readthedocs.io/en/ 
latest/data.html using the sccoda.util.cell_composition_data func-
tion with cell_type_identifier set to supertype and sample_identifier 
set to the sequencing library ID. As we did not know which supertypes 
would be affected by AD, we ran models with each supertype set as the 
unchanged reference population, as recommended by the authors of 
scCODA. We set up an ensemble of models to test whether supertypes 
were credibly affected across cognitive status (no dementia (0) versus 
dementia (1)), ADNC (no AD (0), low (1/3), intermediate (2/3), high (1)) 
and CPS (interval (0,1)) using the scconda.util.comp_ana.Composition-
alAnalysis function with formula set to sex + age at death + race + 10X 
chemistry + APOE4 status + (disease covariate) with each supertype as 
the reference population (yielding a total of 417 models) and obtained 
posterior estimates for each parameter with a Markov chain Monte 
Carlo process implemented in the sample_hmc function with default 
parameters. The sampling occasionally stayed at fixed points, so we 
reran models with fewer than 60% accepted epochs. We defined cred-
ibly affected supertypes as those that had a mean inclusion probability 
across models greater than 0.8. The same approach was used for test-
ing compositional changes across CPS in the snRNA-seq data from the 
SEA-AD A9 dataset using the formula sex + age at death + ace + (disease 
covariate) and across ADNC in snRNA-seq data from refs. 13,14 using 
the formula sex + age at death + APOE4 status + (disease covariate), 
with the sample_identifier set to donor ID as there was no one-to-one 
or one-to-many relationship between donors and libraries across these 
datasets.

Identifying differential electrophysiological features in 
vulnerable neurons from patch-seq data
We obtained publicly available patch-seq20–22 data from 2,602 cells, 
originating from slices from 401 donors. These cells were recorded in 
healthy tissue extracted during surgical resection due to cancer pathol-
ogy or epilepsy (95% of cases) and hydrocephalus, encephalomyelitis, 
aneurism and ventriculoperitoneal shunt (5% of cases). We subsetted 
the dataset to include only cells obtained from the MTG and mapped 
the snRNA-seq data from them to the SEA-AD MTG cellular taxonomy 
using the same iterative scVI and scANVI approach described above for 
the SEA-AD nuclei and the publicly available datasets.

We tested for differences in each electrophysiological feature 
between vulnerable and unaffected neurons in Sst and Pvalb using a 
logistic regression implemented in the Python scikit-learn package 
(v.1.1.1) using the sklearn.linear_model.LogisticRegression function 
with default parameters. The outcome variable was 0 for unaffected 

supertypes and 1 for vulnerable ones; all models were adjusted for 
age at death, sex and whether the slices were cultured or not cultured. 
Covariates were adjusted with either the minmax_scale (for age at 
death) or the OneHotEncoder (for sex and culture status) functions 
in sklearn.preprocessing. We then fitted the model using the sklearn.
linear_model.LogisticRegression.fit function. P values were corrected 
for multiple hypothesis testing with the Benjamini–Hochberg method 
using an alpha value of 0.05.

Statistics, data visualization and reproducibility
All data were analyzed either in Python with custom-written scripts 
or libraries that are described extensively within this section of the 
Methods or the Supplementary Note. Data distribution was assumed 
to be Poisson for quantitative neuropathological data, zero-inflated 
negative binomial for gene expression data, Bernoulli for chromatin 
accessibility data and negative binomial for spatial transcriptomic data, 
but this was not formally tested. Data collection and analysis were not 
performed blind to the conditions of the experiments. Two data points 
were excluded from the analysis of single-nucleus datasets because 
of low-quality RIN values; 11 data points were excluded from the gene 
expression tests given that these donors belonged to the severely 
affected group and exhibited systematically lower-quality data. No 
randomization was necessary due to the experimental conditions. No 
statistical methods were used to predetermine sample sizes, but our 
sample sizes are similar to those reported in previous publications5–14. 
All experiments showing representative images were repeated with 
similar outcomes. For all box plots, the center is the median, the minima 
and maxima of the box are defined by the IQR and the whiskers are 1.5 
times the IQR; unless otherwise stated in the figure legend, all data 
points are shown.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
FASTQ files containing the sequencing data from the snRNA-seq, snA-
TAC–seq and snMultiome assays are available through controlled access 
at Sage Bionetworks (accession no. syn26223298). Instructions for 
access to data on the AD Knowledge Portal is provided by Sage Bionet-
works. Nuclei-by-gene matrices with counts and normalized expression 
values from the snRNA-seq and snMultiome assays are available through 
the Open Data Registry in an AWS bucket (sea-ad-single-cell-profiling) 
as AnnData objects (h5ad files) and viewable on CELLxGENE and 
Allen Brain Cell Atlas (https://portal.brain-map.org/atlases-and- 
data/bkp/abc-atlas). Nuclei-by-peak matrices for the snATAC–seq 
data (with peaks called across all nuclei) are in the same AWS bucket. 
Cell-by-gene matrices containing spatial coordinates from MERFISH 
data are also available through the Open Data Registry in an AWS bucket 
(sea-ad-spatial-transcriptomics). The MERFISH data are also viewable 
on the Allen Brain Cell Atlas. Donor, library and cell-level metadata are 
available in these objects and also at https://portal.brain-map.org/ 
explore/seattle-alzheimers-disease. Raw images from the quantita-
tive neuropathology data are available at the Open Data Registry on 
AWS in an AWS bucket (sea-ad-quantitative-neuropathology) and the 
variables derived from HALO at https://portal.brain-map.org/explore/ 
seattle-alzheimers-disease. We obtained raw sequencing reads from ten 
publicly available datasets that performed single-cell or single-nucleus 
RNA-seq on or near the PFC of human cohorts that included sporadic 
AD donors. These included datasets from the AD Knowledge Portal 
hosted on Synapse: ref. 5 (accession no. syn18485175; stated brain 
region: PFC, Brodmann area 10), ref. 8 (accession no. syn21670836; 
stated brain region: DLPFC, ref. 7 (accession no. syn21438358; stated 
brain region: DLPFC), ref. 12 (accession no. syn16780177; stated brain 
region: DLPFC), ref. 13 (accession no. syn31512863; stated brain region: 
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DLPFC, Brodmann area 9) and ref. 14 (accession no. syn52293417; stated 
brain region: DLPFC). It also included datasets from the Sequencing 
Read Archive (SRA): ref. 6 (accession no. PRJNA662923; stated brain 
region: PFC), ref. 9 (accession no. PRJNA615180; stated brain region: 
SFG), ref. 10 (accession no. PRJNA729525; stated brain region: PFC) 
and ref. 11 (accession no. PRJNA686798; stated brain region: SFC). 
From each of these repositories, including separate data use agree-
ments with the Rush ADRC (for donors from the ROSMAP cohort), we 
also obtained clinical metadata and harmonized it to a standardized 
schema included. We are working with the relevant data repositories 
to obtain approval to share the reprocessed and integrated, publicly 
available datasets under the data use agreements that govern them. 
In the meantime, we have placed the cell type annotations in an AWS 
bucket (sea-ad-single-cell-profiling) without gene expression data or 
donor metadata.

Code availability
The collection of scripts used to annotate the SEA-AD and publicly 
available datasets, perform all the analyses and create each figure 
are available at the Allen Institute GitHub page: https://github.com/
AllenInstitute/SEA-AD_2024.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | SEA-AD Brain Cell Atlas study design. a) Schematic 
detailing experimental design for applying quantitative neuropathology, 
single nucleus RNA sequencing (snRNAseq), single nucleus ATAC sequencing 
(snATAC-seq), single nucleus Multiome (Multiome), and multiplexed error 
robust fluorescence in situ hybridization (MERFISH) to middle temporal gyrus 
(MTG) of SEA-AD donors as well as the analysis plan for construction of a pseudo-
progression score from quantitative neuropathology, integration across -omics 
data modalities, common cell type mapping to the BRAIN initiative reference, 
and use of demographic and clinical metadata to identify cellular and molecular 
changes in AD. b) Top, boxplots showing pre-sequencing quality control 
metrics for donor tissue (for example PMI, RIN, brain pH and mass) and single 
nucleus preparations (for example fraction of NeuN positive nuclei and library 
concentration) organized by AD Neuropathological Change (ADNC). Bottom, A 
donor by metric matrix was constructed for the values indicated, using a simple 
average for variables that had multiple values per donor (for example multiple 
sequencing library concentrations). Principle component analysis (PCA) was 

then run on the matrix. Bottom and left, Violin plot showing the eigenvalues for 
each donor along the first principal component organized by ADNC. Bottom 
and right, heatmap showing z-scores of the pre-sequencing quality control 
metrics (rows) in each donor (columns). Donors and metrics are ordered based 
on the first principal component eigenvalues and eigenvectors. Red dashed 
box, two outlier values along first principal component for two donors that 
were driven by low RIN and brain pH. N represents the total number of donors 
in SEA-AD, N = 84. c) Violin plots showing cellular-level post-sequencing quality 
control metrics for single nucleus transcriptomics, chromatin accessibility and 
multiome data organized by ADNC. Significant p-values: NeuN Fraction Not 
AD versus High=0.05. d) Violin plots comparing library-level post-sequencing 
quality control metrics of snRNA-seq to snMultiome (left) and snATAC-seq 
to snMultiome (right). N represents the total number of libraries profiled 
with snRNA-seq and Multiome, N = 205. Cohort demographic can be found in 
Supplementary Table 1.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Altered multimodal metrics within severely affected 
donors. a) Donor by metric matrices were constructed for the library-level 
post-sequencing quality control values indicated, using a simple average when 
multiple libraries were sequenced per donor. Principle component analysis 
(PCA) was then run on each matrix. Heatmaps showing z-scores of snATAC-seq 
(top) and snRNA-seq (bottom) metrics (rows) in each donor (columns). Donors 
and metrics are ordered based on the first principle component eigenvalues 
and eigenvectors. Red dashed boxes, donors with outlier eigenvalues along 
each PC. b) LOESS regression on longitudinal cognitive scores in the executive, 
visuospatial, and language domain across ADNC 0-2 (Not AD to Intermediate) in 
grey, ADNC 3 donors that were not severely affected in gold, and ADNC 3 donors 
that were in purple. Center lines are the mean from LOESS fits; uncertainty 
represents the standard error from 1000 LOESS fits with 80% of the data 
randomly selected in each iteration. Significant p-values for cognitive decline 
in language: SA donors versus ADNC 0-2 = 0.009, Other ADNC 3 versus ADNC 

0-2 = 0.021. Statistical test is a multinomial logistic regression as described in 
methods’ section Testing for differential cognitive slopes. c) Heatmap showing 
the pairwise jaccard distances based on the peak universes from 11 randomly 
selected ADNC 3 donors (yellow) and all 11 severely affected donors (purple) 
hierarchically ordered. Red boxes, two clusters within the hierarchy that largely 
correspond to the separation between ADNC3 and SA donors. d) Histogram 
showing the distribution of peak lengths of accessible regions in ADNC 3 (yellow) 
and severely affected donors (purple). e) Transcription factors binding sites 
enriched in chromatin accessible regions uniquely found in severely affected 
donors organized by their gene ontology category. Transcription factors that 
bind to them are indicated. f) Stripplot showing the fraction of cells removed 
from each library for having too many mitochondrial reads during quality control 
organized by subclass and by severely affected donors (purple) and ADNC 0–3 
donors (yellow). Cohort demographic can be found in Supplementary Table 1.
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Extended Data Fig. 3 | Human MTG neuropathological stains track brain-wide 
pathological states. a) Schematic depicting neuropathological data acquisition 
pipeline (ordered 1 to 6). b) Boxplots showing the number of pTau-bearing cells 
per unit area organized by Braak stage (left) and number of Aβ plaques per unit 
area organized by Thal phase (right) across donors. Note, in later stages there is 
considerable variability in plaque and tangle number, underscoring limitations 
in classical staging. c) Boxplots showing the percent of pTDP-43-positive voxels 

(left) and percent of α-Syn-positive (α-Synuclein) voxels across donors organized 
by to LATE-NC stage (left) and Lewy Body Disease stage (right). Lewy Body 
Disease is coded numerically (0=Not or Incompletely Assessed, 1=Not Identified, 
2=Amygdala-predominant, 3=Brainstem-predominant, 4=Limbic (Transitional), 
5=Olfactory bulb only, 6=Neocortical). Note, only donors in later stages have 
large accumulation of co-pathology. Cohort demographic can be found in 
Supplementary Table 1.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01774-5

Extended Data Fig. 4 | MTG pseudo-progression scores orders quantitative 
neuropathological variables following increasing disease severity. a) 
Graphical model used to infer the continuous pseudo-progression score (CPS). 
b, c) LOESS regression plots relating mean quantitative neuropathological 
(QNP) variables across layers (B) and demographic/clinical metadata (C) 
indicated to CPS. Dots represent individual donor values. Uncertainty in each 
line represents the standard error from 1000 LOESS fits with 80% of the data 
randomly selected in each iteration. Note, variables from (C) were not used to 
construct the model. CASI, Cognitive Abilities Screening Instrument; ADNC, 

AD Neuropathological Change; PRS, Polygenic Risk Score. d) Left, Subset of 
heatmap from Fig. 2c showing co-correlation of QNP variables in cluster 1. 
Right, Scatterplot showing how the QNP variable number of pTDP-43 positive 
cells per unit area, which is within correlation cluster 1, relates to CPS. Dots 
represent values from each donor in the cortical layer indicated, lines are LOESS 
regressions for measurements across donors within each layer. e) Same plots 
as in (D) but for clusters 2, 6, 5, and 8. Cohort demographic can be found in 
Supplementary Table 1.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Pipeline for the creation of the SEA-AD MTG taxonomy. 
a) Schematic showing steps involved in supertype creation from snRNA-seq data 
in neurotypical reference donors. b) Hierarchical procedure for the creation of 
robustly mappable cell types, termed supertypes. Labels from 1 of 5 reference 
donors was systematically held out and predicted using a deep generative model 
(DGM) trained on the remaining 4 donors. Steps 1 to 3 represent mapping cells 
to one of three classes, splitting each class and mapping to one of 24 subclasses, 
splitting each subclass and mapping to one of 151 clusters from the original 
BRAIN Initiative taxonomy. 26 of 151 clusters were pruned, mostly representing 
cell types that were intermediates of others. Finally, in step 5 we repeat mapping 
with the 125 highly mappable supertypes and show consistently high F1 scores 
across them (box and whisker plot). c) After hierarchically mapping SEA-AD 
nuclei to supertypes using the same approach as above, we filtered low quality 
nuclei within subclasses (The microglia subclass is shown as an example). Left, 
scatterplots showing the UMAP coordinates of all SEA-AD and reference nuclei 

within the microglia subclass. In the first plot, reference nuclei are labeled and 
colored and SEA-AD nuclei are in light grey. In the second and third plots, we 
show the supertype predictions for each nucleus from the DGM as well as the 
uncertainty in the prediction (darker nuclei are more uncertain). In the fourth 
plot we show robust, high resolution Leiden clusters and color them by their 
quality control metrics (that is donor entropy, mean fraction of mitochondrial 
reads, mean doublet score, and mean number of genes detected). d) Scatterplots 
showing scANVI probabilities (top) and supertype signature scores (bottom) 
organized by cell classes. Lines represent linear regressions. Note, decreasing 
probabilities and signature scores for non-neuronal supertypes, but not others. 
e) After removing low quality nuclei new latent representations were learned with 
DGMs, which were then underwent robust Leiden clustering. Clusters with low 
fractions of nuclei from neurotypical reference donors ( < 10%) were added to the 
taxonomy. Cohort demographic can be found in Supplementary Table 1.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Pipeline for the annotation of chromatin accessibility 
data sets. a) Schematic showing steps involved in processing the SEA-AD 
snATAC-seq data, which include global peak calling and modality integration, 
quality control filtering and subclass mapping, and within subclass peak calling 
and supertype mapping. b) Scatterplot showing the UMAP coordinates of all 
nuclei profiled in the middle temporal gyrus (MTG) color coded by indicated 
data modalities. c) Top and left, Same scatterplot as in (B) but color coded by low 
quality cell score (left) and (right) by Leiden clusters with mean low quality cell 
scores greater than 0.5. Violin plot to the right of the first plot shows the binary 
distribution of the low quality cell scores (RNA QC score). Bottom, violin plots 
showing the distribution of the low quality cell score per Leiden cluster, with 

the number of those that were flagged indicated. Top and right, box and whisker 
plot showing the fraction of cells in each snATAC-seq library that were filtered 
during quality control. d) Scatterplots showing the UMAP coordinates from 
(B) of only the high quality nuclei colored by neurotypical reference subclasses 
versus SEA-AD in light grey (left) and by predicted subclass (right). e) Scatterplots 
showing UMAP coordinates of nuclei from 1 example subclass (Sst) based on 
integrated space constructed with subclass-specific peaks. Plots are color coded 
by modality (left), by reference supertypes versus SEA-AD in light grey (middle) 
and by predicted supertype (right). Cohort demographic can be found in 
Supplementary Table 1.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Pipeline for the acquisition of high quality spatial 
transcriptomic data in the human MTG. a) Top, SEA-AD MERFISH cohort 
demographics stratified by AD neuropathological change (ADNC) score. 
Numbers indicate the number of donors in each group. b) Histograms showing 
the correlation between total slide transcripts (left) or transcripts within cells 
(right) and bulk RNAseq across sections. c) Histogram showing the correlation 
between total slide transcripts and transcripts in cells. d) Left, histogram 
showing the correlation in total slide transcripts across sections from the same 
donor. Right, Histogram showing the slope from a linear regression comparing 
total slide transcripts across sections from the same donor. e) Box and whisker 
plot showing F1 scores for subclasses (left) and supertypes (right) from the 
procedure where 1 donor was systematically held out at a time in neurotypical 
reference snRNA-seq data where the model could use all genes (Full) or only the 
140 genes in the MERFISH panel (MERFISH). f) Scatterplots showing the positions 
of excitatory IT neurons as dots from example sections from donors with an 

early (0.17), middle (0.52) and late (0.84) CPS color coded by their subclass. g) 
Barplot showing the relative abundance of excitatory IT neurons across data 
collection efforts in neurotypical specimens from previous studies compared to 
SEA-AD data. h) Heatmaps showing the average gene expression levels of genes 
included in the 140 gene MERFISH panel at the subclass level in snRNA-seq (top) 
and MERFISH (bottom) data from MTG. i) Heatmaps showing the effect sizes 
of relative abundance changes along each covariate from neuronal (left) and 
non-neuronal (right) scCODA models MTG dataset, the SEA-AD snRNA-seq A9 
dataset, Green et al. (2023) snRNA-seq dataset, and Mathys et al. (2023) snRNA-
seq dataset. j) Scatterplots relating the effect sizes of each supertype along CPS 
from scCODA model on SEA-AD MTG dataset to a similar model run on SEA-AD 
snATAC-seq MTG dataset, to a model run without the severely affected donors, 
then including post-mortem interval (PMI) and RIN as covariates (third) and 
grouping data by donor instead of by library. Cohort demographic can be found 
in Supplementary Table 1.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Construction of the gene-dynamic space. a) Schematic 
for identifying differentially expressed genes in each disease epoch along CPS 
using a generalized linear mixed model. b) Swarmplot showing the number of 
genes significantly changed with the continuous pseudo-progression score 
(CPS) in each supertype, organized by subclass. Grey dashed line, expected 
false discovery rate. c) Left, histogram showing the effect sizes across all 
supertypes of significantly changed along CPS. Note, many significant changes 
had relatively small effect sizes. Right, Scatterplot showing a weak (but present, 
R = 0.62) correlation between the number of nuclei and number of genes called 
as significantly changed along CPS. d) Scatterplot relating the mean effect size 
across supertypes of each gene estimated using donors from the early versus 
late disease epochs along CPS. Genes were categorized into 8 bins given their 
early and late effect sizes: DU, down up. DE, down early. DC, down consistently. 
DL, down late. UD, up down. UE, up early. UC, up consistently. UL, up late. 
Right, LOESS regression relating the mean expression of all genes in each 
category to CPS. e) Framework to unsupervised exploration of gene expression 

changes. Early and late effect sizes and z-scored mean gene expression values 
were collected across supertypes. Next, an unsupervised low-dimensional 
representation is built. Right, gene low dimensional representation qualitatively 
annotated to show areas of genes with cell type specific expression (black labels) 
and CPS gene expression dynamics (blue to red labels and dashed lines). f) 
Scatterplots of the gene-dynamic space colored by mean z-scored expression, 
early and late effect size across the supertypes in the cellular neighborhoods 
indicated. g) Top, LOESS regression relating the mean expression of electron 
transport chain (ETC) and ribosomal (Ribo) genes to CPS, color coded by 
inhibitory (left), excitatory (middle), and non-neuronal (right) subclasses. 
Dashed grey line, point in CPS when pathology is increasing (CPS = 0.6); error-
bars are the standard error from 1000 bootstraps using 80% of the data in each. 
Bottom, heatmap displaying mean effect sizes across cell class for genes within 
the ATP synthase complex (blue) and complexes 1 (black) and 4 (red) from the 
electron transport chain. Cohort demographic can be found in Supplementary 
Table 1.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Integration of publicly available snRNA-seq datasets. 
a) Barplots showing the fraction of donors in each of the publicly available 
snRNA-seq datasets that we harmonized metadata for and integrated classified 
in co-pathology neuropathological stages (LBD, Lewy Body Disease; LATE-NC, 
limbic-predominant age-related TDP-43 encephalopathy neuropathologic 
changes; CAA, Cerebral amyloid angiopathy; Ath, Atherosclerosis; Art, 
Arteriosclerosis), that were female, or were in defined age groups. Grey boxes, 
metadata that was unavailable. b) Box and whisker or barplots showing quality 
control metrics across each of the publicly available datasets. Metrics for the 
SEA-AD A9 snRNA-seq dataset are shown at bottom in orange for comparison. c) 
Scatterplot showing UMAP coordinates for MGE-derived inhibitory interneuron 
supertypes across all publicly available and the SEA-AD A9 dataset. Nuclei or cells 
are colored based on the signature score for Sst_25, which are indicated with the 

black dashed circle. d) Scatterplots showing UMAP coordinates of all supertypes 
within their cellular neighborhoods (that is MGE-derived inhibitory neurons, 
CGE-derived inhibitory neurons, Intratelencephalic excitatory neurons, Deep-
projecting excitatory neurons, glial cells, and vascular and immune cells. In each 
neighborhood on left are nuclei and cells colored by supertype and on right cells 
are colored by dataset. e) Scatterplots relating the effect size for the change in 
relative abundance across supertypes in the SEA-AD A9 dataset to those observed 
in the Green_2023 (top) and Mathys_2023 (bottom) datasets. Each point is a 
supertype colored by their subclass and supertypes that are significant in both 
datasets have bigger circles. Dashed grey lines are at 0. Note, several Sst, 1 L2/3 
IT and 1 Lamp5 supertypes that have significant negative effect sizes in both 
datasets. Cohort demographic can be found in Supplementary Table 1.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Characteristics of vulnerable neuronal supertypes. 
a) Heatmap showing the pairwise correlations of the mean expression of all 
genes across the MGE-derived supertypes indicated. Red labels are vulnerable 
supertypes. b) Scatterplot relating the mean enrichment (defined as the 
effect size divided by its standard error (SE) from NEBULA) of each gene in 
vulnerable (vuln) Sst and Pvalb supertypes compared to unaffected types in 
their respective subclasses. c) MERFISH-profiled brain slice in early CPS donor 
(CPS = 0.23) showing each cells location and boundaries defined by the cell 
segmentation, with cortical layers indicated (L1-L6) and separated by dashed 
grey lines. Vulnerable L2/3 intratelencephalic (IT) neurons are color-coded. 
Insets: i) L2/3 IT supertypes have characteristic depths within layers 2 and 3. d) 
Scatterplots showing the spatial locations of individual cells of the inhibitory 
neuron subclasses indicated from representative MERFISH sections in donors at 
increasing CPS stages. Vulnerable supertypes (aff) are shown in darker colors and 
unaffected supertypes (unaff) in lighter ones. e) Bar and swarm plot showing the 
Sag values for Sst supertypes from PatchSeq data on non-AD donors. Vulnerable 
supertypes are colored in red. f) Left, electrophysiological traces showing post-

spike hyperpolarization of membrane potential (y-axis) over time in almost all 
Pvalb neurons from tissue of non-AD human donors that underwent surgical 
resection. Middle, bar and swarm plot showing Sag distributions in individual 
vulnerable (Vul) and unaffected (Unaff) Pvalb neurons. Right, Bar and swarm 
plot showing the Sag values for Pvalb supertypes from PatchSeq data on non-AD 
donors. Vulnerable supertypes are colored in red. g) Left top and bottom, Bar 
and swarm plot showing the Tau apparent membrane time constant values for 
Sst (top) and Pvalb (bottom) supertypes from PatchSeq data on non-AD donors. 
Vulnerable supertypes are colored in red. Middle top and bottom, Bar and swarm 
plots for data on left grouped by vulnerable (vul) and unaffected (un-aff) Sst 
(top) and Pvalb (bottom) supertypes. Logistic regression test is described in 
‘Identifying differential electrophysiological features’, p-value = 1e-6. P-values 
for all differential electrophysiological features are in Supplementary Table 8. h) 
Scatterplot relating the mean early effect size of each gene (dots) in vulnerable 
versus unaffected Pvalb supertypes. Cohort demographic can be found in 
Supplementary Table 1.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Aperio AT2 digital scanner software (102.0.7.5) - Whole slide imaging 

BD Diva software (8.0) - Fluorescence activated nuclei sorting 

Fragment Analyzer (1.2.0.11) - Quantification of cDNA library fragment sizes 

Illumina NovaSeq control software - DNA library sequencing 

Vizgen MERSCOPE control software - Obtaining spatial transcriptomic data

Data analysis HALO (3.4.2986), cellranger (6.0), cellranger-arc (2.0), vizgen-postprocessing (alpha release), python (3.9.7), numpy (1.22.0), scipy (1.8.1), 

seaborn (0.11.2), scikit-learn (1.1.1) scanpy (versions 1.8.1 and 1.9.1), pandas (1.4.2), anndata (0.7.8), sccoda (0.1.7), scvi-tools (0.14.6, 

includes scVI, MultiVI, and scANVI), statsmodels (0.13.2), pytorch (1.10.0), R (4.1.0), nebula (1.2.0), rpy2 (3.5.2), cellxgene (1.1.0).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.



2

n
atu

re p
o

rtfo
lio

  |  rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

FASTQs containing sequencing data from snRNA-seq, snATAC-seq, and snMultiome assays are available through controlled access at Sage Bionetworks (accession: 

syn26223298). Nuclei by gene matrices with counts and normalized expression values from snRNA-seq and snMultiome assays are available through the Open Data 

Registry on AWS as AnnData objects (h5ad), and viewable on the cellxgene platform. Nuclei by peak matrices for the snATAC-seq data (with peaks called across all 

nuclei) and cell by gene matrices containing spatial coordinates from MERFISH data are also available on the Open Data Registry on AWS as AnnData objects. Donor, 

library, and cell-level metadata is available in these objects and also on SEA-AD.org. Raw images from the quantitative neuropathology data are available on the 

Open Data Registry on AWS and the variables derived from HALO on SEA-AD.org. The collection of scripts used to annotate the SEA-AD and publicly available 

datasets, perform all analyses, and build each figure are on the Allen Institute GitHub page: https://github.com/AllenInstitute/SEA-AD_2024. 

 

We obtained raw sequencing reads from 10 publicly available datasets that performed single cell or single nucleus RNA-seq on or near the PFC of human cohorts 

that included sporadic AD donors. These included datasets from the AD Knowledge Portal hosted on Synapse: Mathys et al (2019) (Accession syn18485175, stated 

brain region prefrontal cortex/Brodmann area 10), Zhou et al (2020) (Accession syn21670836, stated brain region dorsolateral prefrontal cortex), Olah et al (2020) 

(Accession syn21438358, stated brain region dorsolateral prefrontal cortex), Cain et al (2022) (Accession syn16780177, stated brain region dorsolateral prefrontal 

cortex), Green et al (2023) (Accession syn31512863, stated brain region dorsolateral prefrontal cortex/Brodmann area 9), and Mathys et all (2023) (Accession 

syn52293417, stated brain region dorsolateral prefrontal cortex). It also included datasets from the Sequencing Read Archive (SRA): Lau et al (2020) (Accession 

PRJNA662923, stated brain region prefrontal cortex), Leng et al (Accession PRJNA615180, stated brain region superior frontal gyrus), Morabito et al (2021) 

(Accession PRJNA729525, stated brain region prefrontal cortex), and Yang et al (2022) (Accession PRJNA686798, stated brain region superior frontal cortex). From 

each of these repositories separate data use agreements with the Rush Alzheimer’s Disease Research Center (for donors from the ROSMAP cohort) we also 

obtained clinical metadata and harmonized it to a standardized schema included below.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender We include sex as a covariate in all our models and report it for each donor in Supplementary Table 1. We discuss our cohorts 

bias for female donors in the manuscript and how that is expected from Alzheimer's disease prevalence.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

We include race as a covariate in all our models and report it for each donor in Supplementary Table 1. Our cohort is almost 

entirely of European descent, so we use White versus Non-white as a binary categorization in our models.

Population characteristics We include age at death as a covariate in all our models and report it for each donor in Supplementary Table 1.

Recruitment Brain specimens were obtained from the Adult Changes in Thought (ACT) Study and the University of Washington Alzheimer’s 

Disease Research Center (ADRC). The study cohort includes all ACT precision rapid autopsies and UW ADRC Clinical Core 

autopsies, with exclusion of those with a diagnosis of frontotemporal dementia (FTD), frontotemporal lobar degeneration 

(FTLD), Down's syndrome, amyotrophic lateral sclerosis (ALS) or other confounding degenerative disorder (not including Lewy 

Body Disease or uVBI). The cohort also excludes individuals that tested positive for COVID-19. The cohort represents the full 

spectrum of Alzheimer’s disease severity.  

The Adult Changes in Thought (ACT) study is a community cohort study of older adults from Kaiser Permanente Washington 

(KPW), formerly Group Health, in partnership with the University of Washington (UW). The ACT study seeks to understand 

the various conditions and life-long medical history that can contribute to neurodegeneration and dementia and has been 

continuously running since 1994, making it the longest running study of its kind. In 2005, ACT began continuous enrollment 

with the same methods to replace attrition from dementia, dropout, and death, ensuring a consistent cohort of ≥2,000 at risk 

for dementia. Total enrollment is nearing 6,000, with over 1,000 incident dementia cases; more than 900 have had autopsies 

to date with an average rate of approximately 45-55 per year. The study completeness of the follow up index is between 95 

to 97%. Subjects are invited to enroll at age 65 by random selection from the patient population of KPW Seattle and undergo 

bi-annual study visits for physical and mental examinations. In addition to this study data, the full medical record is available 

for research through KPW. Approximately 25% of ACT autopsies are from people with no MCI or dementia at their last 

evaluation; roughly 30% meet criteria for MCI, and roughly 45% meet criteria for dementia. Thus, the ACT study provides an 

outstanding cohort of well-characterized subjects with a range of mixed pathologies including many controls appropriate for 

studies proposed for this study. Approximately 30% of the ACT cohort consents to brain donation upon death, and tissue 

collection is coordinated by the UW Biorepository and Integrated Neuropathology (BRaIN) lab, which preserves brain tissue 

for fixed, frozen, and fresh preparations, as well as performing a full post-mortem neuropathological examination and 

diagnosis by certified neuropathologists using the NIA-AA criteria.  

The University of Washington Alzheimer’s Disease Research Center (ADRC) has been continuously funded by NIH since 1984. 

It is part of a nationwide network of Alzheimer’s disease research resource centers funded through the NIH's National 

Institute on Aging (NIA) and contributes uniquely to this premier program through its vision of precision medicine for AD: 

comprehensive investigation of an individual’s risk, surveillance with accurate and early detection of pathophysiologic 

processes while still preclinical, and interventions tailored to an individual’s molecular drivers of disease. Patients enrolled in 

the UW ADRC Clinical Core undergo annual study visits, including mental and physical exams, donations of biospecimens 

including blood and serum, and family interviews. The UW ADRC is advancing understanding of clinical and mechanistic 
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heterogeneity of Alzheimer’s disease, developing pre-clinical biomarkers, and, in close collaboration with the ACT study, 

contributing to the state of the art in neuropathological description of the disease. For subjects who consent to brain 

donation, tissue is also collected by the UW BRaIN lab, and is preserved and treated with the same full post-mortem 

diagnosis and neuropathological work up as described above. 

Human brain tissue was collected at rapid autopsy (postmortem interval <12 hours, mean close to 6.5, Extended Data Fig. 

1a). One hemisphere (randomly selected) was embedded in alginate for uniform coronal slicing (4mm), with alternating slabs 

fixed in 10% neutral buffered formalin or frozen in a dry ice isopentane slurry. Superior and Middle Temporal Gyrus (MTG) 

was sampled from fixed slabs and subjected to standard processing, embedding in paraffin (Extended Data Fig. 1b). 

Ethics oversight In compliance with all ethical standards, informed consent for research brain donation was obtained according to protocols 

approved by the UW and KPWHRI Institutional Review Boards. ACT participants receive compensation for parking/

transportation and an incentive of $50 after completing each study visit. Work at the Allen Institute received a regulatory 

determination of Not Human Subjects research.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was not predetermined, we generated quantitative neuropathology single nucleus -omics datasets on all donors with available 

tissues that were obtained with updated post-mortem processing procedures that met our co-morbidity exclusion criteria at the start of the 

study.

Data exclusions We excluded single nucleus -omics data generated from 2 donors because of poor pre-sequencing quality control metrics (low RIN and brain 

pH). All other data was included. We describe in Methods how we identify and exclude low quality nuclei from otherwise high quality donors.

Replication All experiments were performed on the same cohort of donors. IHC stains were performed across whole slide images and entire anatomical 

regions were quantified instead of multiple fields of view within the same region. We generated two single nucleus RNAseq libraries for every 

donor, but only 1 library for single nucleus ATACseq and single nucleus Multiome (in a subset of donors). We profiled between 2 and 4 whole 

sections with MERFISH for spatial transcriptomics in a subset of donors. All data (including replicates) generated were included in the 

manuscript except as explicitly noted (e.g. exclusion of data from 2 donors due to low quality pre-sequencing metrics).

Randomization There was no randomization used in cohort selection. It is not relevant for this study.

Blinding Human specimens were assigned a unique numerical code. Researchers had access to demographic and clinical information about donors as 

well as the unique numerical code assigned to each donor. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used Antibodies targeted to the following antigens were used for IHC: NeuN (1:500, A60, Mouse, Millipore MAB377), pTDP43 (1:1000, 

Ser409/Ser410, ID3, Rat, Biolegend 829901), Beta Amyloid (1:1000, 6e10, Mouse, Biolegend 803003), Alpha-Synuclein (1:200, LB509, 
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Mouse, Invitrogen 180215), GFAP (1:1000, Rabbit, DAKO Z033401-2), IBA1 (1:1000, Rabbit, Wako 019-19741), and PHF-TAU (1:1000, 

AT8, Mouse, Thermofisher MN1020), Rat IgG (Manufacturer’s proprietary dilution, Goat, Vector Laboratories MP-7444). 

 

Mouse IgG and Rabbit IgG were detected with proprietary probes using MACH3-Mouse (M3M530 and M3M532) and MACH3-Rabbit 

(M3R531 and M3R533) from BioCare medical. 

 

Antibodies targeted to the following antigens used for flow cytometry:  NeuN (P1:250, E conjugated, Mouse, EMD Millipore, Milli-

Mark, clone A60).

Validation Antibodies were validated by their manufacturers as described below: 

1. NeuN: Evaluated by IHC on rat cerebellum and by flow cytometry using U251 cells 

2. pTDP43: Evaluated by WB on rat brain lysate 

3. Beta amyloid: Evaluated by WB on 50ng of the recombinant human APP751 protein 

4. Alpha-Synuclein: Evaluated by IHC staining of human Parkinson's disease tissue 

5. GFAP: The antibody has been solid-phase absorbed with human and cow serum proteins. In crossed immunoelectrophoresis using 

50 µL antibody per cm2 gel area, no reaction with 2 µL human plasma and 2 µL cow serum is observed. The antibody shows one 

distinct precipitate (GFAP) with cow brain extract 

6. IBA1: Evaluated by IHC in mouse cerebellum tissue. 

7. PHF-TAU: Evaulated by ICC/IF on SH-SY5Y cells. 

8. Rat IgG: Evaluated by IHC to detect a rat anti-CD45 antibody in human tonsil tissue.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 

gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 

number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 

the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 

was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 

off-target gene editing) were examined.

Plants

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation To remove a specific region of interest from frozen 4mm thick brain slabs for downstream nuclear sequencing applications, 

tissue slabs were removed from storage at –80C, briefly transferred to a –20C freezer to prevent tissue shattering during 

dissection, and then handled on a custom cold table maintained –20C during dissection. Dissections were performed using 

dry ice cooled razor blades or scalpels to prevent warming of tissues. Dissected tissue samples were transferred to vacuum 

seal bags, sealed, and stored at -80C until the time of use. Single nucleus suspensions were generated using a previously 

described standard procedure (https://www.protocols.io/view/isolation-of-nuclei-from-adult-human-brain-tissue-

ewov149p7vr2/v2). Briefly, after tissue homogenization, isolated nuclei were stained with a primary antibody against NeuN 

(FCMAB317PE, Millipore-Sigma) to label neuronal nuclei. Nuclei samples were analyzed using a BD FACS Aria flow cytometer 

and nuclei were sorted using a standard gating strategy to exclude multiplets17. A defined mixture of neuronal (70%) and 

non-neuronal (30%) nuclei was sorted for each sample.

Instrument BD FACS Aria flow cytometer

Software BD Diva software (8.0)

Cell population abundance A defined mixture of neuronal/NeuN-positive (70%) and non-neuronal/NeuN-negative (30%) nuclei were sorted for each 

donor.
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Gating strategy Nuclei were first gated based on size (forward scatter area, FSC-A) and granularity (side scatter area, SSC-A). Nuclei were then 

gated on DAPI fluorescence, followed by gates to exclude doublets and aggregates (FSC-single cells, SSC-single cells). Lastly, 

nuclei were gated based on NeuN PE signal (NeuN-PE-A) to differentiate neuronal (NeuN+) and non-neuronal (NeuN-) nuclei.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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