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Background: Many patients experience persistent symptoms after COVID-19, a 
syndrome referred to as Long COVID (LC). The goal of this study was to identify 
novel new or worsening comorbidities self-reported in patients with LC.

Methods: Patients diagnosed with LC (n  =  732) at the Mayo Long COVID 
Care Clinic in Rochester, Minnesota and Jacksonville, Florida were sent 
questionnaires to assess the development of new or worsening comorbidities 
following COVID-19 compared to patients with SARS-CoV-2 that did not 
develop LC (controls). Both groups were also asked questions screening for 
myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), generalized 
joint hypermobility (GJH) and orthostatic intolerance. 247 people with LC 
(33.7%) and 40 controls (50%) responded to the surveys.

Results: In this study LC patients averaged 53  years of age and were 
predominantly White (95%) women (75%). The greatest prevalence of new or 
worsening comorbidities following SARS-CoV-2 infection in patients with LC vs. 
controls reported in this study were pain (94.4% vs. 0%, p  <  0.001), neurological 
(92.4% vs. 15.4%, p  <  0.001), sleep (82.8% vs. 5.3%, p  <  0.001), skin (69.8% vs. 
0%, p  <  0.001), and genitourinary (60.6% vs. 25.0%, p  =  0.029) issues. 58% of LC 
patients screened positive for ME/CFS vs. 0% of controls (p  <  0.001), 27% positive 
for GJH compared to 10% of controls (p  =  0.026), and a positive average score 
of 4.0 on orthostatic intolerance vs. 0 (p  <  0.001). The majority of LC patients 
with ME/CFS were women (77%).

Conclusion: We found that comorbidities across 12 surveyed categories were 
increased in patients following SARS-CoV-2 infection. Our data also support 
the overlap of LC with ME/CFS, GJH, and orthostatic intolerance. We discuss 
the pathophysiologic, research, and clinical implications of identifying these 
conditions with LC.
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1 Introduction

Soon after the start of the COVID-19 pandemic, patients 
presented to clinicians with new or worsening symptoms that 
persisted for many months after the initial SARS-CoV-2 infection (1, 
2). This syndrome has been named Long COVID (LC), Post-COVID 
syndrome, and Post-Acute Sequelae of SARS-CoV-2 Infection 
(PASC). The US Centers for Disease Control and Prevention (CDC) 
and the US Department of Health and Human Services define LC as 
signs, symptoms, and conditions persisting for at least 4 weeks 
following COVID-19 (3). The National Academies of Science, 
Engineering, and Medicine (NASEM) defines LC as an infection-
associated chronic condition following SARS-CoV-2 infection that 
lasts at least 3 months, affects at least one organ system, and can 
be continuous, relapsing, or remitting (4). In the first quarter of 2024, 
approximately 5.3% of US adults currently were estimated to have LC 
by the CDC (5). Consequently, the projected economic impact ranges 
from $140 to $600 billion annually (6).

LC impacts multiple organ systems, leading to exertional 
intolerance, fatigue, dyspnea, muscle and joint pain, orthostatic 
intolerance, and cognitive dysfunction (4, 7–9). An electronic health 
record (EHR) study of over 20,000 people with LC in Florida used an 
artificial intelligence program to identify subgroups of patients with 
different organ systems affected by LC that included cardiac and renal 
(34%); respiratory, sleep, and anxiety (33%); musculoskeletal and 
nervous (23%); and digestive and respiratory (10%) systems (10). LC 
is also more likely to occur in patients who are middle-age and of 
female sex (1, 11–13). CDC assessments estimate that LC also has a 
disproportionate impact on the transgender, Hispanic, and multiracial 
populations (5).

LC stands as a prominent recent example of how an infectious 
agent can be  associated with chronic disease (14–17). Infectious 
disease is an established cause of neurodegeneration, including 
neurotropic infections such as Herpesviridae, Bornaviridae, 
Orthomyxoviridae (including influenza), Paramyxoviridae, 
Picornaviridae, Retroviridae and Flaviviridae (18–20). Post-infectious 
onset and the role of latent viruses is also increasingly appreciated in 
the development of myalgic encephalomyelitis/chronic fatigue 
syndrome (ME/CFS) among other related conditions (21–25). 
Accordingly, LC research is quickly revealing high rates of multisystem 
complex chronic diseases such as ME/CFS and postural orthostatic 
tachcyardiac syndrome (POTS) (26–30). Notably, these conditions are 
highly comorbid with each other, along with generalized joint 
hypermobility (GJH), hypermobile Ehlers-Danlos Syndrome (hEDS), 
and hypermobility spectrum disorders (HSD) (31–36). The 
constellation of symptoms and comorbidities reported in LC seem to 
be very similar to those found in ME/CFS, orthostatic intolerance/
POTS, and hEDS/HSD (31–38).

Little data exists on a wide range of comorbidities that may arise 
with LC. The goal of this study was to determine whether new or 
worsening conditions occurred more frequently in patients diagnosed 
with LC at our clinic compared to COVID patients that did not 

develop LC. We additionally examined whether patients with LC were 
more likely to screen positive for ME/CFS, GJH, or orthostatic 
intolerance. We  propose that the identification of overlapping 
conditions and their potential underlying mechanisms may offer 
important insight into research and clinical management of LC.

2 Methods

2.1 Diagnoses

Individuals attending the Long COVID Care Clinic at Mayo 
Clinic Florida and Rochester were diagnosed by general internal 
medicine physicians specialized in LC. A majority of LC physicians 
had additional specialization in fibromyalgia, ME/CFS, POTS, and/or 
hypermobility syndromes (13). All patients diagnosed with LC had 
persistent symptoms for at least 3 months following the start of acute 
SARS-CoV-2 infection. Controls had a confirmed history of SARS-
CoV-2 infection but had not received a diagnosis of LC.

2.2 Long COVID clinic data collection

Patient data were collected over 1 month using two REDCap 
questionnaires sent to patients via the patient portal. The 
questionnaires were based on the Florida EDS Clinic questionnaire 
for patients with hEDS/HSD, with questions added or modified for 
LC, ME/CFS, POTS, and other conditions increasingly suspected in 
infection-associated chronic conditions (39, 40). Dedicated screening 
criteria for hypermobility, ME/CFS, and orthostatic intolerance were 
added. The Long COVID questionnaire obtained self-reported data 
on 115 demographic and health issues in total. This was sent to a 
sample of patients diagnosed with LC at the Mayo Clinic Long 
COVID Clinic in Jacksonville, Florida and Rochester, Minnesota. 
Health information focused on symptoms and comorbidities 
throughout the body and whether specific comorbidities were new or 
worse following COVID. A matching control questionnaire was 
created where wording was modified to ask participants about 
symptoms since prior COVID infections without mention of Post-
COVID Syndrome or Long COVID, and was sent to a control group 
in Rochester, Minnesota consisting of individuals who had had prior 
COVID infection without diagnosis of LC. Specifically, the control 
participants were from a developing age-sex matched cohort 
specifically for Long COVID studies, currently in process of 
recruiting with 80 subjects enrolled at the time of the survey. The 
Long COVID questionnaire was sent to 494 patients in Florida and 
238 patients in Minnesota. A total of 247 individuals completed the 
Long COVID questionnaire (33.7% response rate): 124 (25.1% 
response rate, 50.2% of total responses) from Florida and 123 (51.7% 
response rate, 49.8% of total responses) from Minnesota. The control 
questionnaire was completed by 40 individuals from Minnesota (50% 
response rate).
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2.3 Statistical analysis

Categorical variables were summarized as frequency (percentage) 
and continuous variables were reported as median (range). Wilcoxon 
rank sum test was used to evaluate the difference in continuous 
variables between LC patients and controls while Fisher’s exact test 
was used to compare categorical variables. Multivariable logistic 
regression models were used to evaluate the difference between LC 
and control patients after adjusting for age and race (White vs. 
non-White). Firth’s penalized logistic regression was used for 
outcomes with zero events in the control group. All tests were 
two-sided and p values <0.05 were considered statistically significant. 
The analysis was performed using R (version 4.2.2).

2.4 Categories

We assessed whether patients diagnosed with LC observed new or 
worsening conditions for 14 major systems categories after SARS-CoV-2 
infection compared to controls: allergies/sensitivities/intolerances, skin, 
neurologic, pain, sleep, autoimmune, genitourinary, mood, 
gastrointestinal, pulmonary, cardiac, endocrinologic, hematologic/
oncologic, and dental disorders, as included in the original questionnaire.

A portion of the major categories also included an expanded set 
of specific conditions that respondents could select based on expert 
opinion of potentially common and/or underrecognized coexisting 
conditions (39). Those categories and conditions included:

 • Skin: easy bruising, poor/slow wound healing, easy/abnormal 
scarring, abnormal striae, lipedema, psoriasis, eczema, rosacea, 
hives, and flushing.

 • Neurologic: headache, migraine, Arnold Chiari malformation, 
intracranial hypertension/elevated CSF pressure, CSF leak, 
autonomic dysfunction not meeting criteria for postural 
orthostatic tachycardia syndrome, postural orthostatic 
tachycardia syndrome, vertigo, neuropathy (small and/or large), 
tinnitus, craniocervical instability, myalgic encephalomyelitis/
chronic fatigue syndrome, autism/autism spectrum disorder, 
inappropriate sinus tachycardia, and recurrent syncope.

 • Pain: fibromyalgia, chronic pain—non-muscular, chronic muscle 
pain, cervicalgia, central pain syndrome, central sensitization, 
muscle spasms, and complex regional pain syndrome.

 • Sleep: obstructive sleep apnea, snoring, narcolepsy, idiopathic 
hypersomnia, insomnia, sleep disturbance, restless leg syndrome, 
parasomnia, and circadian rhythm disorders (such as delayed 
sleep phase syndrome).

 • Genitourinary: bladder prolapse, uterine prolapse, recurrent 
urinary tract infections, recurrent yeast infections, recurrent 
vaginal bacterial infections, incontinence, pelvic floor spasm, 
pelvic floor dysfunction, dyspareunia, interstitial cystitis, 
endometriosis, and polycystic ovary syndrome (PCOS). Sexual 
and menstrual concerns were surveyed separately.

Finally, a miscellaneous category was included for emerging 
phenomena within infection-associated chronic illness to assess the 
level of recognition of those comorbidities, including mast cell disease, 
endothelial dysfunction, viral persistence/reactivation, vascular 
compression syndromes, mitochondrial impairment, and sensitivity 

to medications, based on expert discussion surrounding emerging 
areas in the field of infection-associated chronic conditions.

2.5 Screening for hypermobility, ME/CFS, 
orthostatic intolerance

Several screening criteria were embedded in the REDCap 
questionnaires to determine whether patients had ME/CFS, GJH, or 
orthostatic intolerance. The Institute of Medicine/National Academy 
of Science, Engineering and Medicine (IOM/NASEM) 2015 criteria 
were used for ME/CFS (41). The self-assessment 5-part hypermobility 
questionnaire was utilized to assess GJH. This is used in clinical practice 
to screen for hEDS/HSD as well, acknowledging that GJH may not 
always be symptomatic and is not alone sufficient to obtain a diagnosis 
of hEDS or HSD, where other criteria are required (42–44). A modified 
version of the orthostatic intolerance domain of the Composite 
Autonomic Symptom Scale 31 (COMPASS-31) questionnaire was used 
for orthostatic intolerance screening (45) (Supplementary material 1).

3 Results

3.1 Patient demographics

Controls were older (58.5 years) than patients with LC (53.0 years) 
(p = 0.021) (Table 1). However, most controls (70.0%) and patients 
with LC (75.3%) self-reported being female, which was not 
significantly different between groups (p = 0.52) (Table 1). Controls 
(100%) and patients with LC (93.9%) self-reported as White vs. 
non-White for race (p = 0.24) (Table 1).

3.2 New or worsening comorbidities after 
COVID

New or worsening conditions were reported in 11 major systems 
categories, as well as in the miscellaneous category (Table 2). The major 
systems included, in descending order of frequency, pain conditions 

TABLE 1 Demographics.

Control 
(n  =  40)
(n, %)

Long COVID 
(n  =  247)

(n, %)

p value

Age, median 

(range)

58.5 (28.0, 83.0) 53.0 (18.0, 84.0) 0.021

Sex 0.520

  Female 28 (70.0%) 186 (75.3%)

  Male 12 (30.0%) 60 (24.3%)

  Not disclosed 0 (0.0%) 1 (0.4%)

LGBTQIAa 3 (7.5%) 19 (7.7%)

Race 0.240

  White 40 (100.0%) 232 (93.9%)

  Not White 0 (0.0%) 15 (6.1%)

aLGBTQIA; lesbian, gay, bisexual, transgender, queer, intersex or asexual.
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(94.4% vs. 0%, p < 0.001), neurological conditions (92.4% vs. 15.4%, 
p < 0.001), sleep issues (82.8% vs. 5.3%, p < 0.001), skin issues (69.8% 
vs. 0%, p < 0.001), genitourinary issues (60.6% vs. 25.0%, p = 0.029), 
allergies/sensitivities/intolerances (31.8% vs. 10.0%, p < 0.001), mood 
disorders (31.6% vs. 7.5%, p = 0.001), gastrointestinal disorders (21.9% 
vs. 2.5%, p = 0.002), autoimmune issues (16.2% vs. 0%, p = 0.006), 
pulmonary disorders (15.8% vs. 0%, p = 0.002), and cardiac disorders 
(12.1% vs. 0%, p = 0.012) (Table 2). Presence of a new or worsening 
comorbidity following COVID-19 in LC patients that were found to 
be significant are shown in Table 3, adjusted for age and race. Female 
sex was associated with increased risk of neurologic manifestations 
and hypermobility in LC (Table 4; Supplementary material 2).

Within the miscellaneous category, participants were asked if 
conditions had been diagnosed or suspected by a clinician after 
COVID, with answer choices of yes, unknown/unsure, or no. Results 
of significance in LC vs. controls included mast cell issues (16.2% yes, 
36.3% unsure vs. 2.4% yes, 5 unsure, p < 0.001), endothelial 
dysfunction (3.9% yes, 32.9% unsure vs. 0% yes or unsure, p < 0.001), 
viral reactivation (e.g., Epstein–Barr virus, herpesvirus, or other 
viruses) (18.7% yes, 17.8% unsure vs. 2.6% yes, 2.6% unsure, p < 0.001), 
vascular compression syndromes (3.6% yes, 8.5% unsure vs. 0% yes, 
2.4% unsure, p = 0.039), and mitochondrial disease/dysfunction (5.2% 
yes, 23.9% unsure vs. 0% yes, 2.4% unsure, p < 0.001). The 
questionnaires also asked about sensitivity or resistance to 
medications. LC respondents were more likely to report sensitivity to 
medications than controls (22.5% vs. 4.9%, p = 0.007).

New or worsening diagnoses within the categories of dental, 
hematologic/oncologic, or endocrinologic disorders did not meet 
statistical significance in our survey.

3.3 Screened comorbidities

We screened patients for ME/CFS, GJH, and orthostatic 
intolerance. A majority of patients with LC reported ME/CFS 
symptoms (58.3%) compared to controls (0%) (p < 0.001) (Table 4). A 
similar proportion of patients with co-occurring LC and ME/CFS 
were female (59.7%) vs. male (53.3%) (p = 0.45) We found that around 
27% of patients with LC reported GJH compared to only 10% of 
controls (p = 0.026) (Table 4). Most of the patients with co-occurring 
LC and GJH were female (90.5%) vs. male (9.5%) (p < 0.0001), and all 
controls with a positive screen were female (Table 4). LC patients 
reported orthostatic intolerance symptoms with a score of 4.0 after 
COVID compared to a score of 0 for controls (p < 0.001) (Table 2). 
Both males and females with LC had a score of 4.0 for orthostatic 
intolerance symptoms (p = 0.19).

4 Discussion

Our research demonstrates statistically significant reporting of 
new diagnoses or worsening of existing conditions following 
COVID-19 infection present across almost every organ system 
surveyed in LC compared to controls. Of the major systems and 
comorbidities that we examined in this study, ones that were new or 
worse in patients with LC vs. COVID controls were pain (94.4), 
neurological (92.4%), sleep (82.8%), skin (69.8%), genitourinary 
(60.6%), allergies/sensitivities/intolerances (31.8%), mood disorders 
(31.6%), sensitivity to medications (22.5%), gastrointestinal disorders 
(21.9%), viral reactivation (e.g., Epstein–Barr virus, herpesvirus, or 

TABLE 2 New or worsening comorbidities after COVID-19.

Control (n  =  40) Long COVID 
(n  =  247)

p value

Did your pain condition(s) start or worsen after COVID? 0 (0.0%) 169 (94.4%) <0.001

Did any of your neurologic condition(s) start or worsen after COVID? 2 (15.4%) 195 (92.4%) <0.001

Did your sleep condition(s) start or worsen after COVID? 1 (5.3%) 144 (82.8%) <0.001

Did your skin condition(s) start or worsen after COVID? 0 (0.0%) 90 (69.8%) <0.001

Did at least one genitourinary condition start or worsen after COVID? 3 (25.0%) 66 (60.6%) 0.029

Allergies, sensitivities/intolerances <0.001

*Allergies, sensitivities/intolerances stayed the same 21 (52.5%) 68 (28.1%)

*Allergies, sensitivities/intolerances new after COVID 4 (10.0%) 77 (31.8%)

*Allergies, sensitivities/intolerances before COVID got worse 3 (7.5%) 55 (22.7%)

Diagnosis of a mood disorder (e.g., depression, anxiety) after COVID 3 (7.5%) 78 (31.6%) 0.001

Diagnosis of a gastrointestinal disorder (e.g., inflammatory bowel syndrome) 

after COVID

1 (2.5%) 54 (21.9%) 0.002

Have you been diagnosed with an autoimmune disorder? 0.006

*Before COVID 4 (10.0%) 35 (15.0%)

*After COVID 0 (0.0%) 38 (16.2%)

*Before + more after COVID 0 (0.0%) 5 (2.1%)

Diagnosis of a pulmonary disorder (e.g., asthma, interstitial lung disease) after 

COVID

0 (0.0%) 39 (15.8%) 0.002

Diagnosis of a cardiac disorder (e.g., myocarditis, heart failure) after COVID 0 (0.0%) 30 (12.1%) 0.012
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other viruses) (18.7%), autoimmune diagnoses (16.2%), mast cell 
issues (16.2%), pulmonary disorders (15.8%), cardiac disorders 
(12.1%), and vascular compression syndromes (3.6%).

Notably, LC patients were more likely to screen positive for ME/
CFS, orthostatic intolerance, or GJH than to report being formally 
diagnosed with one of these conditions. Almost 60% of our patients 
diagnosed with LC also met IOM/NAM ME/CFS 2015 criteria (41). 
This finding is consistent with other studies that reported 43–58% of 
patients with LC have ME/CFS (26–28). We also found that around 
30% of LC patients had a positive screen for GJH according to the 
self-assessment 5-questions for hypermobility (42).

4.1 Comorbidities in LC and related 
conditions

Our study supports much of the current literature surrounding 
different comorbidities in LC, ME/CFS, orthostatic intolerance, 
hypermobile conditions, and related complex chronic disease. Having 

found that 30% of our LC respondents screened positive for GJH, our 
findings correspond to a recent UK study of 2,854 patients that also 
assessed GJH using the self-assessment 5-part hypermobility 
questionnaire that found that GJH was associated with a 30% 
increased risk of developing LC (46).

The most frequently reported symptoms in this study were pain 
and neurologic symptoms/conditions. The development of fatigue, 
chronic widespread pain, and muscle/joint pain are all common to LC, 
ME/CFS, fibromyalgia and hEDS/HSD (30, 47–49). New onset or 
worsening chronic pain has a prevalence of 45–70% across multiple 
studies of LC patients (50). A cross-sectional survey study of adults 
with LC in Bangladesh (n = 563) identified five types of commonly 
occurring pain in LC: muscle pain, chest pain, joint pain, headache, 
and abdominal pain, all of which were associated with a reduction in 
quality of life (51). Pre-existing chronic pain conditions are also risk 
factors for developing LC. In a retrospective EHR study of people with 
acute COVID (n = 1,038,402), having a chronic pain condition such 
as fibromyalgia, endometriosis, or irritable bowel syndrome increased 
the risk of developing LC by 1.47 (95% CI = 1.46, 1.47) (52). Our team 
also recently found that around 70% of patients seen at the Mayo 
Florida EDS Clinic are diagnosed with fibromyalgia, indicating high 
overlap between hEDS, HSD and fibromyalgia (39).

Multiple studies have found that a high percentage of LC patients 
also have ME/CFS (26–30). Craniocervical disease, Arnold Chiari 
malformations, idiopathic intracranial hypertension, and other spinal 
structural and flow issues have been associated with ME/CFS, 
fibromyalgia, and connective tissue disorders previously (35, 53–57). 
Additionally, an estimated 50–81% of people with ME/CFS have 
hypermobility (35, 58). Joint hypermobility disorders themselves are 
strongly associated with autonomic dysfunction, including chronic 
orthostatic intolerance and POTS in up to 48% of patients with hEDS/
HSD, as well as headaches of various origin (59–64). Neurodivergent 
conditions including ADHD and autism also have a higher prevalence 
in people with joint hypermobility (43, 65, 66).

Orthostatic intolerance was frequent both with self-reporting and 
screening questions in LC. Previous studies have found that around 
30–80% of LC patients fulfill the criteria for POTS (29, 67). Patients 
with LC can also have evidence of autonomic dysfunction including 
reduced cerebral blood flow and symptoms of orthostatic intolerance 
on a tilt table test without meeting the heart rate criteria for POTS 
(68). GJH, hEDS and HSD are strongly associated with autonomic 
dysfunction, with chronic orthostatic intolerance and POTS found in 
up to 48% of patients with hEDS/HSD (59–64).

Multiple studies have also found that sleep dysfunction is common 
in LC patients. A survey study of adults with LC at the Cleveland 
Clinic found that 58.7% of patients reported normal to mild sleep 
disturbances, and 41.3% reported moderate to severe sleep 
disturbances (69). In a separate retrospective survey of LC patients, 
82.3% reported poor sleep quality (70). Almost half of subjects 
involved in a study assessing the effects of altered brain perfusion and 
oxygen levels in LC reported daytime sleepiness, differentiated from 
LC fatigue (71). Sleep disorders and dysfunction, including 
non-restorative sleep, are also prevalent in ME/CFS, fibromyalgia, and 
hEDS/HSD (41, 72–74).

Among patients with recent COVID-19, the frequently reported 
skin conditions include maculopapular rashes, urticarial lesions, and 
chilblains (75). LC patients report a range of skin conditions in clinic, 
however these are not well documented in the literature, thereby 

TABLE 3 Multivariable logistic regression model evaluating new or 
worsening comorbidities after COVID between Long COVID and controls, 
adjusted for age and race (White).

Outcome OR (95% CI) p value

Allergy 5.09 (2.26, 13.06) <0.001

Sleep 138.31 (25.61, 

2,585.15)

<0.001

Genitourinary 4.28 (1.13, 21.04) 0.04

Autoimmune 16.71 (2.28, 2,130.38) 0.001

Gastrointestinal 10.6 (2.19, 190.93) 0.02

Mood 5.42 (1.87, 23.06) 0.006

Cardiac 11.84 (1.6, 1,512.55) 0.009

Pulmonary 15.02 (2.04, 1,915.54) 0.003

TABLE 4 Assessment of generalized hypermobility, ME/CFS, and 
orthostatic intolerance.

Control 
(n  =  40)
(n, %)

Long 
COVID 

(n  =  247)
(n, %)

p value

ME/CFS 0 (0.0%) 144 (58.3%) <0.001

  Females 0 (0.0%) 111 (77.1%)

  Males 0 (0.0%) 32 (53.3%)

Hypermobility 

(GJH)a

4 (10.3%) 63 (27.0%) 0.026

  Females 4 (100.0%) 57 (90.5%)

  Males 0 (0.0%) 6 (9.5%)

Orthostatic 

intolerance

0.0 (0.0, 5.0) 4.0 (0.0, 7.0) <0.001

  Females 0.0 (0.0, 5.0) 4.0 (0.0, 7.0)

  Males 0.0 (0.0, 5.0) 4.0 (0.0, 7.0)

aGJH, generalized joint hypermobility; ME/CFS, myalgic encephalomyelitis/chronic fatigue 
syndrome.
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making our study one of the first to assess overlapping dermatologic 
involvement. Skin conditions are also present in hEDS and mast cell 
activation syndrome (MCAS). In hEDS, skin manifestations include 
soft skin, hematomas, atrophic scars, piezogenic pedal papules, and 
cutaneous stretchability (76). Skin manifestations of MCAS include 
flushing, pruritus, hives, and angioedema, and non-diagnostic skin 
manifestations include dermographism, urticaria, rashes, edema, 
alopecia, poor healing, and onychodystrophy (77). More research is 
needed on the causes, duration, and type of skin lesions in LC.

Our findings also align with research on genitourinary and 
reproductive health in LC. LC patients have an increased risk for 
several reproductive health conditions, many of which are also 
elevated in people with EDS, ME/CFS, or POTS (78). Women with 
endometriosis had an elevated risk for developing LC in a large EHR 
study of non-hospitalized LC patients (48). Similarly, multiple studies 
have found that endometriosis is elevated in women with EDS, ME/
CFS, and POTS compared to general population prevalence (78, 79). 
Women with PCOS in a large population based cohort study had a 
28% increased risk for COVID-19 infection after accounting for age 
and BMI, and PCOS is also elevated in ME/CFS and POTS (78, 80).

The development of autoimmune conditions was also more 
common after COVID for people diagnosed with LC compared to 
controls. As of June 2024, following this study’s period of data collection, 
the presence of autoimmune disorders are included in the definition of 
LC (4). Autoimmunity has been proposed to play a role in LC even 
without coexisting diagnosis of conditions that are already established 
as autoimmune, as suggested by basic science research (81–83). 
Additionally, two EHR studies of adult Korean and Japanese patients 
found that COVID-19 is associated with a significant risk for developing 
autoimmune and autoinflammatory connective tissue disorders (84, 85).

Finally, our study confirms that allergies, sensitivities, and 
intolerances are common in LC. Allergies and sensitivities to 
environmental and food antigens are common in ME/CFS, and are 
included in both the Canadian Consensus Criteria and International 
Consensus Criteria for diagnosis of ME/CFS (86, 87). In an online 
survey of Dutch (n = 337) and US (n = 252) ME/CFS patients, 19.1% 
of the Dutch cohort and 46.8% of the US cohort reported “sensitivity 
to smells, food, medications, or chemicals” (88). These new and 
worsening sensitivities and intolerances have been theorized to be due 
to mast cell hyperactivation including MCAS (89–91).

4.2 Emerging mechanisms

Given the widespread effects of LC on the body, it stands to reason 
that key underlying mechanisms behind this disease would have the 
ability to affect multiple organ systems simultaneously. While there is 
no consensus on the etiology of LC, many theories have emerged (13, 
38, 92). Proposed underlying pathologies in addition to immune and 
neurologic dysregulation have included mast cell disease, endothelial 
dysfunction and other sequelae of vascular damage, viral reactivation, 
and mitochondrial impairment, all of which were self-reported as 
occurring more frequently in people with LC than controls in our 
study (7, 93, 94). Research groups are increasingly evaluating the role 
of these pathologies in the context of LC and as related to each other, 
as well as in other infection-associated chronic conditions (93, 95).

Female sex, and particularly pre-menopausal status, have been 
associated with LC and conditions of hypermobility, orthostatic 
intolerance, and ME/CFS (12, 51, 96–99). Low testosterone has also 

been found to be a risk factor for developing LC (1, 100). Variances in 
hormonal composition has therefore become an area of interest in 
understanding the development of infection-associated chronic 
illness. There are key hormonal as well as chromosomal and metabolic 
factors that significantly impact both innate and adaptive immune 
responses to infection, and while such differences can be protective in 
the context of an acute infection, they may provide a double-edged 
sword that increases risk for infection-associated chronic illness (101). 
This may also relate to why a majority of autoimmune diseases, such 
as Sjogren’s syndrome and systemic erythematous lupus, occur more 
frequently in females than males, given how autoimmune diseases can 
themselves be triggered by infections (102–107).

Viral and other microbial infections are strongly linked to the 
development of ME/CFS, with 70–80% of patients reporting having 
had a viral infection just prior to the development of symptoms (21–
25). Viral infections and viral particles could lead to persistent 
activation of the innate immune response. Additionally, many viruses 
are known to localize to mitochondria and utilize mitochondrial 
machinery for viral replication including SARS-CoV-2, which could 
lead to mitochondrial dysfunction in numerous cell types and organs 
(94, 108–116). This corresponds to mitochondrial dysfunction being 
a hallmark pathology of ME/CFS, and likely LC (38, 93). Oxidative 
stress, reduced perfusion to tissue, and metabolic dysfunction are 
additional emerging pathologies that could conceivably contribute to 
extracellular membrane and connective tissue breakdown (91).

Nervous system involvement is prominent in LC, both as an 
affected system as well as a mechanism of symptom development. 
Autonomic dysfunction, observed at higher rates in LC, ME/CFS, and 
hEDS/HSD, and often manifesting as dysregulated heart rate and 
blood pressure control, directly contributes to the fatigue, exercise 
intolerance, and orthostatic symptoms seen in many patients (7, 29, 
61, 68, 93, 117). Autoantibodies have also been found in the context of 
dysautonomia, adding to inflammatory aggravation (82). Small fiber 
neuropathy commonly coexists with hypermobility and autonomic 
disorders, contributing to dysthesias and thermodysregulation as well 
(61). Insular cortex hyperactivation has also been noted across 
hypermobility, neurodevelopmental conditions such as autism, and 
dysautonomia, and multiple brain signaling abnormalities have been 
described in ME/CFS including of the brainstem (93, 118, 119). 
Advanced neuroimaging has demonstrated altered neurochemical 
milieu and neuroinflammation in ME/CFS and LC (120–122). Central 
sensitization syndrome has been proposed as a potential theory behind 
neurologic symptomatology, but has fallen out of favor given its 
inability to account for major manifestations such as post-exertional 
malaise as well as the demonstrated presence of the aformentioned 
neurologic and immunologic contributors (7, 8, 50, 123, 124).

Hyperactivation of mast cells is a likely mechanism that may link 
LC, hEDS/HSD, ME/CFS, POTS, and multiple other co-occurring 
conditions (125–128). Mast cells are antigen presenting cells found 
throughout the body that activate in response to infections and toxins 
(129). Mast cells may be  activated by SARS-CoV-2 because they 
express receptors for viral entry, including H1, ACE2, TMPRSS2, 
NRP1, integrins and cathepsins (126, 127, 130). They then promote 
proinflammatory T helper (Th)2 responses and Toll-like receptor 
(TLR)4 induced interleukin (IL)-1β, which has been found to 
be elevated in LC patients (131–134). A Th2-type immune environment 
allows viral infections to have an advantage and/or persist, because 
Th1-type immune responses are needed to clear viral infections (131, 
135). Aberrant mast cell activation has also been implicated in 
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exacerbation of autonomic symptoms (136). In particular, mast cells 
have been found to activate the vagus nerve by release of IL-1β and 
tumor necrosis factor (TNF) (137, 138). Mast cells are also involved in 
thromboembolic responses that mediate many poor outcomes in 
COVID-19 (126, 127). Mast cell hyperactivation is also observed in 
patients with hEDS/HSD where they respond to defective connective 
tissue and promote the breakdown of extracellular matrix/connective 
tissue. Importantly, mast cell numbers and function differ by sex and 
genetic background, which may partly explain the frequency of LC, 
ME/CFS, and hEDS/HSD in White females (127, 139, 140).

Finally, tissue laxity worsened by the presence of inflammation 
may contribute to structural and vascular conditions (53, 56). The 
inherent connective tissue abnormalities in hEDS/HSD and related 
conditions can lead to vascular and structural instability. This laxity 
may impair structural integrity of blood vessels, leading to venous 
pooling and subsequent orthostatic intolerance. Patients with hEDS 
and HSD frequently exhibit signs of altered baroreflex sensitivity and 
increased sympathetic activity, issues that can impair normal 
autonomic responses to postural and environmental changes (61, 63). 
Orthostatic flow dysfunction via stasis of venous flow and 
pressurization, with concomitant venous hypovolemia above the 
pelvis, has been hypothesized to play a role in patients with pelvic pain 
secondary to pelvic congestion syndromes (141–143). A newer 
phenotype along the idiopathic intracranial hypertension spectrum, 
cerebral venous outflow disorders, was recently described with a high 
co-occurrence in connective tissue disorders and especially EDS (57). 
Therefore, it is reasonable to consider the potential contribution of 
vascular and spinal compression syndromes in LC.

4.3 Future research

The multiple intertwined pathophysiologic processes in LC 
underscores the need for comprehensive research to unravel the 
precise mechanisms and develop targeted therapeutic strategies. 
Future research should also explore the frequency of coexisting 
conditions across the different topics surveyed here, including the 
order and timeline in which these typically develop, to see if certain 
diagnoses are more likely to create a risk of or co-develop within 
LC. Future research should further study mechanisms in LC and 
similar infection-associated chronic illnesses. Areas could include, but 
are not limited to, examining the role of breakdown of connective 
tissue in these illnesses; immune dysfunction (such as mast cell 
activation), autoimmunity, and chronic inflammation; metabolic and 
mitochondrial dysfunction; sex and hormonal differences; tissue 
hypoperfusion; nutrient and mineral depletion; and persistent 
infections. The true prevalence of the lesser studied pathologies should 
be better elucidated as well. While our study suggests that potentially 
critical pathologies such as vascular and endothelial dysfunction, mast 
cell activation, viral reactivation, and structural/outflow contributors 
are starting to be discussed with patients, it is likely that involvement 
of these pathologies are underestimated.

4.4 Clinical implications

A strength of our survey is that we simultaneously assessed for 
numerous potential coexisting conditions. Our findings bring to 

question the impact of potential underdiagnosis of associated 
conditions by clinicians. While there are no formal guidelines or 
approved treatments currently for management of LC, people living 
with LC may find symptom improvement through management 
correlating with correctly identified coexisting pathologies and 
conditions. Long COVID clinics also specializing in connective tissue 
disorders, ME/CFS, POTS, fibromyalgia, mast cell activation, and 
associated conditions have effectively applied similar principles to the 
appropriate LC patients (13, 144, 145).

For example, people with LC identified to have features of post-
exertional malaise, often associated with ME/CFS, can benefit from 
applying a pacing activity management strategy (28, 146, 147). Other 
non-pharmacologic interventions beneficial for post-exertional 
malaise, sensory sensitivity, orthostatic intolerance, and other 
symptoms may also be easily trialed by patients if present (98, 145, 
148). People with LC and commonly overlapping illnesses, such as 
ME/CFS and POTS, should be  screened for connective tissue 
disorders and vice versa. Screening for hypermobile tendencies may 
open opportunities for management and reduction in joint instability 
and chronic pain, dysautonomia, and other symptoms.

Similarly, therapeutics employed in overlapping conditions may 
be harnessed for LC (149). Pharmacologic options utilized in POTS 
may be helpful in cases of orthostatic intolerance as well as those 
meeting POTS criteria, as can fibromyalgia medications for pain 
associated with LC (7, 13, 98). Mast cell therapies and agents that 
improve endothelial dysfunction have also been associated with 
symptom improvement in LC (7, 13, 150, 151). Low-dose naltrexone 
has been helpful in patients with LC, ME/CFS, fibromyalgia, POTS, 
autism, MCAS, hypermobility, and autoimmune disorders. The 
beneficial effects of LDN may be  secondary to neuroimmune 
attenuating effects which may further suggest potential overlapping 
pathologies of these conditions (13, 152–160). Identifying conditions 
or syndromes with autoimmune associations that could follow 
COVID-19 infection can allow for informed trials of 
immunomodulatory therapy (144, 161–166). The role of 
antimicrobials in managing infection-associated chronic illness is 
under investigation (144). Identification of structural contributors 
that are amenable to intervention may alleviate symptoms in select 
cases (56, 141, 142, 167).

Clinicians suspecting LC should apply the current ICD-10 code, 
U09.9—Post COVID-19 condition along with the code M35.89 for 
“other specified systemic involvement of connective tissue” related to 
COVID-19 if applicable (168, 169). Accordingly, diagnostic codes for 
overlapping conditions as mentioned here, such as ME/CFS (G93.32) 
and OI/POTS (G90.A) should also be  considered. Additional 
diagnostic codes are being developed for coexisting pathologies. Use 
of these codes can improve electronic capture, thereby allowing for 
more accurate research and management related to these groups.

4.5 Limitations

Our study has several limitations. Both study sites were part of a 
single tertiary/quaternary care center and as such the findings from 
this cohort of patients may not represent all patient populations. The 
disparity in representation is also evident in that 93.9% of LC 
respondents were White. Controls were based only in Minnesota 
while LC patients were seen at both Minnesota and Florida sites and 
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could be  from any location, and there were no responses from 
non-White individuals for the control group. Furthermore, the control 
group utilized for this study was limited in number and, consequently, 
the study had uneven sample sizes. It is possible that severe symptoms 
affected the ability of some LC patients to participate in the call for 
survey responses. All participants in this study were at least 3 months 
from a COVID infection; however, the specific length of LC and 
whether the patient had multiple infections were not recorded. 
Although our survey population was aged similar to other studies at 
an average of 52 years, this could lead to a lower percentage of GJH 
being reported as GJH reduces dramatically post-menopause. The 
primarily female sample reflects the female predominance in 
infection-associated chronic illness groups, however a larger, more 
balanced sample would be better powered to assess sex differences 
within systems.

This is a survey-based study which is inherently limited by the 
recollection of participants regarding symptoms and diagnoses. It 
is important to acknowledge however that a number of the 
conditions evaluated in this survey are also only recently being 
recognized by many infection-associated chronic illness experts, 
and as such likely underdiagnosed even in our study population. As 
such, respondents who were evaluated more recently may have been 
more likely to receive diagnoses based on growing knowledge and 
recognition of certain comorbidities, compared to those evaluated 
much earlier in the rise of LC. The screening instruments 
incorporated into the survey are also insufficient to independently 
establish a formal diagnosis. Although inclusion of EHR data may 
have offered additional information, EHR data are especially fallible 
in the context of new and emerging diseases that may not have 
associated ICD coding yet.

5 Conclusion

In this study, we  identified that a number of symptoms and 
comorbidities are new or worse following SARS-CoV-2 infection in 
patients diagnosed with LC compared to controls. The LC patients in 
this study also had similar co-occurrence of ME/CFS, GJH and 
orthostatic intolerance as other studies. Our paper provides a 
foundation to examine these relationships further. These findings 
highlight the presence of multiple underrecognized conditions in the 
context of LC, especially those involving autonomic dysfunction, 
connective tissue compromise and immune dysregulation. As the 
prevalence of different pathologies and conditions is better 
characterized in LC, research can further elucidate mechanisms that 
offer the potential for more effective treatments.

Software

Study data were collected and managed using REDCap electronic 
data capture tools hosted at Mayo Clinic. 1, 2 REDCap (Research 
Electronic Data Capture) is a secure, web-based software platform 
designed to support data capture for research studies, providing (1) an 
intuitive interface for validated data capture; (2) audit trails for 
tracking data manipulation and export procedures; (3) automated 
export procedures for seamless data downloads to common statistical 

packages; and (4) procedures for data integration and interoperability 
with external sources (170, 171).
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