
Vol.: (0123456789)

GeroScience 
https://doi.org/10.1007/s11357-024-01323-9

ORIGINAL ARTICLE

Human herpesvirus reactivation and its potential role 
in the pathogenesis of post‑acute sequelae of SARS‑CoV‑2 
infection

Zsófia Gáspár · Bálint Gergely Szabó   · 
Andrea Ceglédi · Botond Lakatos

Received: 1 August 2024 / Accepted: 21 August 2024 
© The Author(s) 2024

Abstract  The emergence of SARS-CoV-2 has pre-
cipitated a global pandemic with substantial long-
term health implications, including the condition 
known as post-acute sequelae of SARS-CoV-2 infec-
tion (PASC), commonly referred to as Long COVID. 
PASC is marked by persistent symptoms such as 
fatigue, neurological issues, and autonomic dysfunc-
tion that persist for months beyond the acute phase 
of COVID-19. This review examines the potential 
role of herpesvirus reactivation, specifically Epstein-
Barr virus (EBV) and cytomegalovirus (CMV), in 
the pathogenesis of PASC. Elevated antibody titers 
and specific T cell responses suggest recent herpes-
virus reactivation in some PASC patients, although 
viremia is not consistently detected. SARS-CoV-2 
exhibits endothelial trophism, directly affect-
ing the vascular endothelium and contributing to 

microvascular pathologies. These pathologies are 
significant in PASC, where microvascular dysfunc-
tion may underlie various chronic symptoms. Simi-
larly, herpesviruses like CMV also exhibit endothelial 
trophism, which may exacerbate endothelial damage 
when reactivated. Evidence suggests that EBV and 
CMV reactivation could indirectly contribute to the 
immune dysregulation, immunosenescence, and auto-
immune responses observed in PASC. Additionally, 
EBV may play a role in the genesis of neurological 
symptoms through creating mitochondrial dysfunc-
tion, though direct confirmation remains elusive. 
The reviewed evidence suggests that while herpesvi-
ruses may not play a direct role in the pathogenesis 
of PASC, their potential indirect effects, especially in 
the context of endothelial involvement, warrant fur-
ther investigation.

Keywords  COVID-19 · SARS-CoV-2 · PASC · 
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Introduction

The emergence of SARS-CoV-2 (severe acute res-
piratory syndrome coronavirus 2) in 2019 has led to 
a global pandemic with profound health, social, and 
economic impacts [1]. As of mid-2024, COVID-
19 has resulted in over 775 million confirmed cases 
and more than 7 million deaths worldwide [2]. The 
virus has significantly impacted global mortality 
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rates, particularly among older adults and those with 
underlying health conditions[3–6]. The mortality rate 
for COVID-19 varies widely depending on age, with 
older adults being disproportionately affected [3]. 
For instance, individuals aged 65 and older account 
for over 80% of COVID-19 deaths in many coun-
tries [7]. Older adults are particularly vulnerable to 
severe outcomes from COVID-19 due to several fac-
tors, including the prevalence of comorbidities such 
as cardiovascular disease, diabetes, and chronic res-
piratory conditions, which exacerbate the severity of 
the infection [3–6, 8]. Additionally, the efficiency of 
the immune system declines with age, a phenomenon 
known as immunosenescence, making it harder for 
older adults to mount an effective immune response 
to the virus [3, 9–11].

While the acute phase of COVID-19 has been 
extensively studied, increasing attention is being 
given to a significant subset of individuals who 
experience persistent symptoms and health issues 
long after the initial infection, known as post-acute 
sequelae of SARS-CoV-2 infection (PASC), or Long 
COVID [12–19]. The World Health Organization 
(WHO) characterizes PASC as the persistence or 
emergence of new symptoms three months after the 
initial SARS-CoV-2 infection, with these symptoms 
lasting for at least two months without any other iden-
tifiable cause [12]. However, various studies use dif-
fering definitions and associate this condition with a 
wide range of symptoms, durations, and risk factors, 
complicating comparisons and summarization of evi-
dence (Table 1) [20].

Patients with prolonged symptoms after docu-
mented COVID-19 can be categorized into three 
subgroups [1, 20, 21]. The first subgroup includes 
individuals hospitalized for severe SARS-CoV-2 
infection who display signs of post-intensive care 
syndrome [20, 22]. The second subgroup consists 
of individuals with previously undiagnosed chronic 
comorbidities, whose symptoms may have emerged 
as an indirect consequence of the pandemic’s health, 
social, and economic impacts (e.g., isolation, lifestyle 
changes) [1, 20, 21]. The third subgroup involves 
patients experiencing prolonged symptoms after the 
acute phase of SARS-CoV-2 infection, a condition 
defined in the literature as PASC [20].

The National Institute for Health and Care Excel-
lence (NICE) defines PASC as either ongoing symp-
tomatic COVID-19 in individuals who continue to 

experience symptoms between 4 and 12 weeks after 
the onset of acute symptoms or as post-COVID-19 
syndrome in individuals who continue to experience 
symptoms for more than 12 weeks after the onset of 
acute symptoms [23]. Alternatively, the WHO defines 
PASC as a condition in individuals with suspected or 
confirmed SARS-CoV-2 infection who exhibit persis-
tent symptoms lasting for at least two months with-
out an alternative pathophysiological explanation [12, 
21]. In the literature, the terms Long COVID, long-
hauler, post-COVID condition, and PASC frequently 
overlap [12]. Additionally, due to similar prolonged 
symptomatology and the post-viral syndrome theory, 
myalgic encephalopathy/chronic fatigue syndrome 
(ME/CFS) has also been compared with PASC [20].

Symptoms of PASC

Patients report various symptoms as part of PASC, 
including neurological symptoms (commonly referred 
to as brain fog), fatigue, sleep disturbances, memory 
disturbances, headaches, autonomic dysfunction such 
as postural orthostatic tachycardia syndrome (POTS), 
musculoskeletal pain, post-exertional malaise, chest 
pain, cough, loss of smell or taste, and anxiety [20, 
21, 24]. While many of these symptoms are difficult 
to define or directly link to a recent SARS-CoV-2 
infection, dysautonomia and neurological symp-
toms have measurable alterations [20]. One of the 
most commonly documented symptoms of PASC is 
“brain fog,” which typically refers to a lack of focus, 
impaired short-term memory, and diminished cogni-
tive sharpness in affected patients [25]. Among the 
autonomic dysfunction symptoms of PASC, POTS 
is characterized by a tachycardic state experienced 
by patients upon standing up from a lying position 
[26, 27]. The pathophysiology of POTS is diverse, 
involving factors such as excessive sympathetic activ-
ity, impaired peripheral autonomic function, volume 
dysregulation, and cardiovascular or autoimmune 
dysfunction [20]. Recently, POTS has been linked 
to PASC [20, 26, 27]. The typical manifestation 
of POTS includes palpitations (heart rate increase 
of > 30 beats per minute without a blood pressure 
drop), dizziness, and shortness of breath, typically 
occurring after standing up or walking [20]. Campen 
et al. described that in patients infected with SARS-
CoV-2, high sympathetic activity is present during 
the earlier stages of the clinical course, manifesting as 
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POTS [28]. Alterations of sympathetic activity persist 
while further PASC symptoms develop and gradually 
decrease over time [28].

Prevalence of PASC

Evaluating the prevalence of PASC is challenging due 
to heterogeneous definitions, symptomatology, and 
the lack of consensus [21]. Conservative estimates 
based on WHO data suggest that approximately 
10–20% of individuals infected with SARS-CoV-2 
subsequently develop this condition [12]. However, 
the prevalence may be significantly higher in certain 
populations, with studies indicating that close to two-
thirds of COVID-19 survivors may develop PASC. 
This higher prevalence is particularly observed 
among patients who experienced severe acute illness, 
were hospitalized, or had pre-existing health condi-
tions [4, 13, 15, 16, 29–36]. Age is a significant risk 
factor for the development of PASC [15, 37]. Previ-
ous studies indicate that over one-third of patients 
aged 65 and older who have had COVID-19 develop 
persistent symptoms lasting more than 6  months, 
leading to a considerable reduction in quality of life 
[38, 39]. However, these symptoms are often attrib-
uted to pre-existing chronic comorbidities by health-
care professionals, complicating the direct attribution 
to PASC [37]. Furthermore, elderly patients might be 
less likely to seek professional care compared with 
younger patients with persistent or new-onset post-
acute infection symptoms, contributing to a lower rate 
of PASC diagnosis in this population [37].

Potential mechanisms involved in the pathogenesis of 
PASC

The potential causes and pathophysiological mecha-
nisms of PASC remain unknown, though several the-
ories exist, including microvascular dysfunction, per-
sisting low-grade neuroinflammation, mitochondrial 
damage and dysfunction, autoimmune processes, 
SARS-CoV-2 viral persistence, and immune activa-
tion, either individually or in combination [40, 41].

Role of microvascular endothelial dysfunction

Microvascular dysfunction has emerged as a sig-
nificant factor in the pathogenesis of neurological 
sequelae of COVID-19 and PASC. The endothelial 

trophism of SARS-CoV-2 directly impacts the micro-
vasculature, leading to widespread endothelial dam-
age and inflammation [42–44]. This damage is often 
characterized by endothelial cell activation, micro-
thrombosis, and increased vascular permeability, con-
tributing to a range of long-term symptoms [44–51]. 
In patients with COVID-19, persistent endothelial 
dysfunction has been observed long after the acute 
phase of the infection [47–50, 52–63]. This dysfunc-
tion is associated with impaired neurovascular cou-
pling responses, which are critically relevant to cog-
nitive impairment [55]. Neurovascular coupling, the 
mechanism by which neural activity is matched with 
blood flow ensures that active regions of the brain 
receive adequate oxygen and nutrients [64]. In PASC 
patients, the disruption of this process due to endothe-
lial dysfunction can lead to inadequate cerebral per-
fusion. This mismatch between neuronal demand 
and blood supply is believed to contribute directly to 
symptoms such as brain fog, memory disturbances, 
and reduced cognitive function often reported in 
PASC patients. Additionally, microvascular injury 
may lead to the disruption of the blood–brain barrier 
(BBB), allowing inflammatory mediators to enter the 
central nervous system and contribute to neuroinflam-
mation [46].

Role of neuroinflammation

Emerging evidence suggests that persisting low-grade 
neuroinflammation plays a critical role in the patho-
genesis of PASC [45, 65]. Studies have shown that 
individuals with PASC often exhibit markers of ongo-
ing inflammation, which may underlie many of the 
neurological and cognitive symptoms associated with 
this condition [42, 66–69]. For instance, research 
has identified elevated levels of pro-inflammatory 
cytokines and chemokines, such as IL-6, TNF-alpha, 
and CCL11, in the cerebrospinal fluid and blood of 
PASC patients, indicating a persistent inflammatory 
state in the central nervous system [70–75]. Persist-
ing microglial activation, a hallmark of neuroinflam-
mation, has been observed in the brain tissue samples 
following mild SARS-CoV-2 infection [75]. Micro-
glia activation was significantly higher among human 
patients with PASC and neurological symptoms, 
compared with those with PASC without neurologi-
cal symptoms [75].This chronic microglia activation 
can lead to synaptic dysfunction, neuronal injury, 
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and impaired neurogenesis, contributing to the symp-
toms of brain fog, memory disturbances, and cogni-
tive decline reported by many PASC patients. Besides 
microglia reactivity, impaired hippocampal neurogen-
esis, myelin loss, and a reduced number of oligoden-
drocytes were identified in brain tissues derived from 
PASC patients [75]. Moreover, the breakdown of the 
BBB has been implicated in PASC [46]. The BBB 
disruption allows peripheral inflammatory mediators 
to enter the brain, exacerbating local neuroinflam-
matory processes. This mechanism further supports 
the hypothesis that persistent low-grade neuroinflam-
mation is a central feature of PASC pathogenesis. A 
recent study examined cerebrospinal fluid (CSF) sam-
ples from PASC patients with neurological symptoms 
[76]. Elevated protein levels were found in a quarter 
of the patients, and 13% exhibited blood–brain barrier 
dysfunction measured via the CSF/serum albumin 
quotient [76]. Overall, these findings underscore the 
importance of neuroinflammation in PASC and sug-
gest potential therapeutic targets for managing PASC 
symptoms, including anti-inflammatory treatments 
and strategies to restore BBB integrity [77, 78].

Connection between microvascular endothelial 
dysfunction, neuroinflammation, and herpesvirus 
reactivation

A potential contributor to persistent neuroinflam-
mation in PASC is the reactivation of latent her-
pesviruses, such as Epstein-Barr virus (EBV) and 
cytomegalovirus (CMV). Both EBV and CMV have 
known neurotropic and endothelial-tropic proper-
ties, allowing them to infect and persist in the central 
nervous system and the vascular endothelium. Reac-
tivation of these viruses under conditions of immune 
stress, such as during or after an acute SARS-CoV-2 
infection, can exacerbate the inflammatory environ-
ment within the brain. The presence of these viruses 
can trigger additional immune responses, further 
activating microglia and perpetuating the cycle of 
neuroinflammation [79–83]. Emerging evidence 
underscores the interconnected roles of herpesvirus 
infection/reactivation and microvascular endothelial 
dysfunction as well [84–91]. Reactivated EBV and 
CMV can infect endothelial cells and promote a pro-
inflammatory state, thereby perpetuating the cycle of 
endothelial dysfunction and neuroinflammation. This 
interplay between viral reactivation and endothelial 

damage may contribute to the persistence and sever-
ity of PASC symptoms.

This review aims to provide a comprehensive 
summary of the potential role of various herpesvirus 
infections in the pathogenesis of PASC, highlighting 
the complex interconnections between microvascular 
endothelial dysfunction, neuroinflammation, and viral 
reactivation 40. Understanding these mechanisms is 
crucial for developing targeted therapeutic strategies 
to mitigate the long-term impacts of PASC.

Background on herpesviruses and their 
reactivation

Herpesviridae is a large family of double-stranded 
DNA viruses that affect humans and animals [92]. 
Key members affecting only humans are divided into 
three subfamilies: alpha (herpes simplex virus type 1 
and 2, and varicella-zoster virus), beta (CMV, human 
herpesvirus 6 [HHV-6], and human herpesvirus 7), 
and gamma (EBV and Kaposi’s sarcoma-associated 
herpesvirus/human herpesvirus 8) [92]. Transmis-
sion occurs via direct contact, respiratory routes, or 
body fluids, with viral replication and assembly tak-
ing place within the host cell [92].

Clinical phases of herpesvirus infection

Human herpesvirus infection is characterized by 
three distinct clinical phases: the acute phase, latent 
infection, and reactivation [93]. The acute phase 
involves continuous viral replication, viral assembly, 
and a cytolytic mechanism, during which the virus is 
released from the cell. This phase primarily involves 
epithelial cells and is controlled by the adaptive 
immune system [93]. Subsequently, the virus enters 
a latent phase in specific cell types, with the viral 
genome present in the host cell nucleus without sig-
nificant active replication [93].

Biological mechanisms of latency

The latency phase of herpesvirus infection is a com-
plex process that enables the virus to persist in the 
host for extended periods without causing active dis-
ease. This phase is marked by the maintenance of the 
viral genome in a dormant state within host cells, 
where it evades the host immune system. Several 
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biological mechanisms contribute to the establish-
ment and maintenance of viral latency. Latency-
associated transcripts (LATs) are non-coding RNAs 
expressed during the latent phase of herpesvirus 
infection [94, 95]. These transcripts play a crucial 
role in maintaining latency by inhibiting apopto-
sis and modulating the host cell’s stress response, 
thereby ensuring the survival of infected cells and 
the viral genome [94]. The viral genome undergoes 
epigenetic modifications such as methylation and 
histone modification, which silence the expression 
of lytic genes and maintain the virus in a quiescent 
state [96–99]. These epigenetic changes prevent the 
reactivation of the virus under normal conditions 
but allow for quick reactivation when triggered by 
specific stimuli [96–99]. During latency, herpesvi-
ruses employ multiple strategies to evade the host 
immune system [100–103]. For example, they down-
regulate the expression of major histocompatibility 
complex (MHC) molecules on the surface of infected 
cells, reducing their recognition and destruction by 
cytotoxic T lymphocytes [104]. Additionally, latent 
viruses produce proteins that inhibit the presenta-
tion of viral antigens and the activation of immune 
responses [104–107].

The mechanisms of viral latency also involve 
microRNA (miRNA) regulation [105, 108–111]. 
Herpesviruses encode miRNAs that can modulate 
both viral and host gene expression. These miRNAs 
can downregulate the expression of viral lytic genes 
and host immune response genes, thereby main-
taining latency and preventing the activation of the 
immune system against the virus [105, 108–111]. 
Herpesviruses establish latency in specific cellular 
reservoirs that are less likely to be targeted by the 
immune system [112–115]. CMV primarily estab-
lishes latency in myeloid lineage cells, including 
monocytes, macrophages, and their CD34 + progeni-
tor cells in the bone marrow. During latent infec-
tion, the viral genome persists in these cells without 
producing infectious virions. CMV can reactivate 
in response to immunosuppression or cellular dif-
ferentiation, leading to viral replication and dis-
semination. EBV primarily targets B lymphocytes 
for latency, especially memory B cells. HHV-6 
establishes latency in a variety of cell types, includ-
ing monocytes, macrophages, and CD4 + T lympho-
cytes. These cellular reservoirs provide a protected 
environment for the viruses, allowing them to evade 

immune surveillance and persist for the lifetime of 
the host. During latent infection, some fraction of 
latently infected cells may still produce low levels 
of virions, which can activate a herpesvirus-spe-
cific T-cell response [93]. These herpesvirus-spe-
cific T cells can induce inflammatory responses at 
mucosal surfaces and become transiently activated 
during secondary infections, potentially modu-
lating immune responses to other antigens [93]. 
Understanding the intricate mechanisms of herpes-
virus latency is crucial for developing strategies to 
manage and treat herpesvirus-associated diseases, 
particularly in the context of co-infections such as 
SARS-CoV-2.

Epstein‑Barr virus (EBV)

EBV is an oncogenic virus transmitted through close 
contact, replicating within the oropharyngeal epi-
thelium and B cells. In immunocompetent patients, 
primary infection manifests either asymptomatically 
or as the classic mononucleosis syndrome [92]. The 
innate immune system recognizes EBV antigens 
through various pattern recognition receptors, sub-
sequently activating the adaptive immune system 
and eliciting a virus-specific immune response. Acti-
vated B cells and CD8 + T cells recognize lytic viral 
antigens and latent cells [116]. After primary infec-
tion, the virus becomes latent in memory B cells 
[116]. During latency, EBV infected cells adopt one 
of several latency programs, restricting viral genome 
expression and maintaining non-replicating regions 
in a highly methylated state [116]. Virus-associated 
latent membrane protein 1 (LMP1) and latent mem-
brane protein 2A (LMP2A) downregulate antigen 
processing [116, 117]. EBV-encoded microRNAs 
create an immunosuppressive environment, and LMP 
proteins contribute to prolonged B cell survival, con-
tinuous activation, and apoptosis avoidance through 
signaling pathways [116].

Reactivation of latent EBV can occur under 
immunocompromised conditions, acute stressors, 
or concurrent acute infections [40]. In most latent 
cells, the EBV genome is present without significant 
replication; however, some viral genes continue to 
be expressed, driving oncogenesis [118]. Proteins 
responsible for the cytolytic phase also play a role 
in driver mutations [118]. EBV is associated with 
various lymphoproliferative diseases (e.g., Hodgkin 
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lymphoma, some non-Hodgkin lymphomas, Burkitt 
lymphoma) and epithelial cell malignancies (e.g., 
nasopharyngeal carcinoma) [118]. Also, in HIV-
associated lymphomas, especially primary cen-
tral nervous system lymphomas EBV in malignant 
cells can be detected in approximately 40–100% of 
cases[119]. The exact pathogenesis of primary cen-
tral nervous system lymphomas without systemic 
involvement remains not fully understood[120]. 
However, potential mechanisms have been sug-
gested, including the production of adhesion mol-
ecules like BCA-1 by malignant B cells, facilitating 
their migration to the central nervous system[120]. 
Additionally, STAT-6 and interleukin-4 have been 
implicated in tumor progression[120].

Additionally, EBV is linked to autoimmune dis-
eases, including systemic lupus erythematosus 
(SLE), rheumatoid arthritis, Sjögren’s syndrome, 
and multiple sclerosis [117, 121]. The mechanisms 
and evidence behind the association between EBV 
and autoimmune diseases involve several interre-
lated processes. First, EBV-associated antibodies 
can cross-react with SLE-specific autoantigens, a 
phenomenon known as molecular mimicry, which 
allows autoantibodies to target and damage human 
tissues [117]. Furthermore, EBV latency proteins 
can influence B cell survival, immunoglobulin pro-
duction, and cytokine production, leading to a dys-
regulated immune system and triggering autoim-
mune pathways [117]. Studies have also indicated 
a reduced EBV-specific CD8 + T-cell response 
coupled with elevated CD4 + T-cell levels, indicat-
ing a poor EBV-specific immune response117. Addi-
tionally, patients with SLE often exhibit elevated 
levels of viral nucleic acids or EBV antigen titers, 
providing further evidence of the association [117]. 
Similar associations can be observed between mul-
tiple sclerosis (MS) and EBV infection [121]. Indi-
viduals infected with EBV have a 30-fold increased 
risk of developing MS compared with those who 
are EBV-negative [121]. A high EBV antibody titer 
following infection is a strong predictor for the 
development of MS [121]. Pathogenesis theories of 
MS highlight a lag period after primary EBV infec-
tion during which clonal B cell lineages and a poor 
CD8 + T-cell response develop [121]. This period 
also sees the strengthening of molecular mimicry 
and epitope spreading, contributing to the autoim-
mune processes involved in MS development[121].

Cytomegalovirus (CMV)

CMV is a beta-herpesvirus that typically manifests 
asymptomatically or as mononucleosis syndrome 
[92]. Primary infection is usually self-limiting and 
requires only supportive care [122]. CMV seropreva-
lence increases with age, approaching nearly 100% in 
developing countries [122]. During primary infection, 
a robust immune response is generated, involving 
both the innate and adaptive immune systems [123]. 
The adaptive immune response includes the produc-
tion of specific neutralizing antibodies and CD4 + and 
CD8 + T cells [124]. Despite the strong primary 
immune response, CMV establishes latency through 
immunomodulation, which can involve modulation 
of direct NK cell recognition or interferon responses. 
CMV also produces an interleukin-10 (IL-10) homo-
logue, which inhibits Th1-mediated monocyte activa-
tion and major histocompatibility complex II (MHC-
II) presentation [124]. CMV genes expressed during 
the lytic phase interfere with MHC-I and MHC-II, 
inhibiting adaptive immune system activation [124].

After primary infection, CMV latency is pre-
dominantly established in myeloid cells and their 
CD34 + bone marrow progenitors, as well as in 
epithelial and mesenchymal cells [122, 124]. Dur-
ing latency, no active virion production occurs; 
only latency-associated genes and proteins (LUNA, 
UL138, US28, LAvIL-10) are expressed, and the 
primary promoter responsible for the lytic cycle is 
silenced [123]. The proteins produced by latency-
associated genes elicit CD4 + T cell responses [124]. 
CD4 + T cells can recognize latently infected mono-
cytes and restrict MHC-II-associated cytotoxicity 
[124]. Similar to EBV infection, where LMP1 initi-
ates the IL-10 pathway, CMV latency-associated 
CD4 + T cells also produce IL-10 and TGF-ß, down-
regulating immune activation [123, 124]. From 
latency, CMV reactivation can occur, either iatrogeni-
cally or due to medical conditions, leading to dissem-
inated disease with multi-organ involvement [92].

Primary CMV infection can also occur congeni-
tally. During pregnancy, maternal infection may 
result from the reactivation of a latent virus or from 
reinfection through close contact with a susceptible 
individual[125]. Maternal infection leads to viremia, 
allowing the virus to spread transplacentally to the 
foetus[126]. Congenital CMV is the leading cause 
of congenital infections, in a long-term contributing 
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to visual or sensorineural hearing impairment, intel-
lectual disability, and cerebral palsy[125, 127, 128]. 
Studies on congenital CMV have demonstrated that 
almost all cell types in the central nervous system are 
susceptible to CMV infection, with astrocytes and the 
microvasculature system particularly supporting the 
entire replication process[126].

Human herpesvirus 6 (HHV‑6)

Human herpesvirus 6 encompasses two distinct 
viruses: HHV-6A and HHV-6B[129]. Similar to 
other herpesvirus infections, HHV-6 targets and rep-
licates within a wide range of cells primarily target-
ing CD4 + T-cells[130]. Primary infection, which is 
generally a mild, self-limiting illness, occurs almost 
exclusively due to HHV-6B during the first 3 years of 
life [130, 131]. Following primary infection, the virus 
establishes latency in the monocyte-macrophage sys-
tem and T-cells [130].

Reactivation of HHV-6 can occur under various 
immunosuppressive conditions, most commonly 
associated with solid-organ or hematopoietic cell 
transplantation, leading to end-organ diseases such 
as myelosuppression, encephalitis, pneumonitis, and 
hepatitis [130, 132]. HHV-6 is also linked to a range 
of neurological conditions, including febrile sei-
zures, mesial temporal lobe epilepsy, and encepha-
litis, attributed to its neurotropic properties [133, 
134]. The virus exhibits neuroinvasive character-
istics, activating oligodendrocytes and astrocytes, 
thereby creating a Th1-mediated proinflammatory 
state [134]. Additionally, HHV-6 binds to the CD46 
receptor, contributing to an enhanced complement 
activation, decreased interleukin-10 production and 
increased interleukin-17 level, thereby promoting 
neuroinflammation and the development of neu-
rological conditions [134]. HHV-6 has also been 
linked to myalgic encephalomyelitis/chronic fatigue 
syndrome (ME/CFS), although evidence remains 
inconclusive [81, 135].

Herpesviruses and endothelial trophism

Herpesviruses, including CMV, EBV, and HHV-6, 
exhibit endothelial trophism, meaning they have a 
propensity to infect and persist in endothelial cells 
[85, 87, 89, 90, 114, 136–150]. This endothelial 

infection plays a significant role in the pathogenesis 
and clinical manifestations of herpesvirus infections.

CMV is well-documented for its endothelial 
trophism [85, 90, 114, 136, 139–142, 149]. The virus 
can infect and establish latency in endothelial cells, 
leading to various vascular pathologies [85, 90, 114, 
136, 139–142]. CMV infection of endothelial cells 
induces a pro-inflammatory state characterized by 
the expression of adhesion molecules and the secre-
tion of cytokines and chemokines, which can promote 
leukocyte adhesion and transmigration [90]. This 
inflammation contributes to the development of ath-
erosclerosis, transplant vasculopathy, and other vas-
cular diseases [84, 89, 90, 151]. CMV infection was 
shown to cause endothelial dysfunction and poten-
tially impair endothelial barrier function [152–154]. 
CMV infection likely also promotes the formation of 
microthrombi [155–157]. EBV also has the capabil-
ity to infect endothelial cells [145–147]. In endothe-
lial cells, EBV can induce changes that promote 
endothelial dysfunction and inflammation and con-
tribute to the pathogenesis of various vascular dis-
eases [145–147, 158]. HHV-6 is also known to infect 
endothelial cells [149]. HHV-6 infection in endothe-
lial cells can lead to the production of pro-inflam-
matory cytokines and the upregulation of adhesion 
molecules, promoting an inflammatory response and 
leukocyte adhesion [150]. The endothelial trophism 
of these herpesviruses means that they can directly 
contribute to vascular inflammation and damage, 
which are central features in many of their associated 
diseases. Reactivation of herpesviruses in endothelial 
cells is thought to contribute to the exacerbation of a 
range of pathologies, particularly in immunocompro-
mised individuals [138, 159–161].

Risk factors for herpesvirus reactivation

Various risk factors can contribute to enhanced viral 
replication and gene expression, leading to the reacti-
vation phase of herpesviruses [93]. These risk factors 
differ among Herpesviridae subfamilies but typically 
include oncohematological malignancies, steroid or 
other immunosuppressive treatments, chemotherapy, 
irradiation, local injury, other infections, UV light 
exposure, and hormonal imbalances [162]. Addition-
ally, age-associated degradation of the immune sys-
tem, particularly affecting cellular immunity, plays a 
significant role [163]. Immunosenescence refers to 
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the functional decline of the immune system associ-
ated with aging, characterized by reduced responses 
to antigen stimuli and a decreased number of effec-
tive immune cells, increasing susceptibility to infec-
tions and auto-reactive pathways [163]. Age-related 
chronic low-grade inflammation creates a pro-inflam-
matory environment in various tissues, facilitating 
herpesvirus reactivation and contributing to low-
level chronic inflammation, further exacerbating age-
related immune mechanisms [164].

Reactivation of herpesviruses in PASC

The reactivation of latent herpesviruses, such as EBV, 
CMV, and HHV-6, is a significant concern in patients 
with COVID-19 [82, 165–178]. A recent study con-
ducted a comprehensive analysis of CMV seroposi-
tivity rates among patients with varying severities 
of SARS-CoV-2 infection [179]. This study revealed 
a notable trend: severely ill patients exhibited higher 
CMV seroprevalence compared to the general popu-
lation [179], highlighting the intricate relationship 
between COVID-19 severity and the likelihood of 
herpesvirus reactivation. Previous studies identified 
that SARS-CoV-2 specific T cell receptors (TCRs) 
exhibited a robust response to CMV, indicating an 
immunomodulatory role of CMV in the pathogen-
esis of COVID-19 [180]. This was further substanti-
ated by Frozza et  al., who investigated CMV serol-
ogy, CMV-specific T cells, and cytokine profiles in 
COVID-19 patients [181]. Their study demonstrated 
a Th17-dominated immune shift due to CMV infec-
tion, marked by elevated levels of CMV-specific 
CD4 + and CD8 + T cell responses and increased 
production of cytokines such as IFNγ, IL-17, and 
TNFα in both mild and severe COVID-19 cases 
[181]. Recent studies confirm associations between 
various herpesvirus infections and PASC [82, 182]. 
For instance, a notable study categorized previously 
SARS-CoV-2-infected patients into subgroups based 
on the severity of their post-COVID-19 conditions—
mild, severe, or without chronic symptoms [182]. 
These groups were compared with healthy donors 
and patients with ME/CFS [182]. The study found 
a significantly higher IgG response against EBV 
and HSV-1 in the post-COVID-19 groups compared 
with healthy donors [182]. Additionally, elevated 
HHV-6 antibody titers were observed in the ME/CFS 

subgroup, suggesting a possible link between these 
viral infections and the persistence of symptoms in 
PASC patients [182].

Several factors associated with COVID-19, includ-
ing immune dysregulation, systemic inflammation, 
and direct viral interactions, can trigger the reactiva-
tion of these latent viruses. COVID-19 is character-
ized by profound immune dysregulation [41], which 
can diminish the host’s ability to keep latent herpes-
viruses in check. This weakened immune surveillance 
can lead to the reactivation of these viruses. Studies 
have shown that severe SARS-CoV-2 infection can 
significantly suppress T-cell function[41], which is 
critical for controlling latent herpesvirus infections. 
Increased production of inflammatory cytokines 
induced by SARS-CoV-2 infection can also contrib-
ute to herpesvirus reactivation. Elevated levels of pro-
inflammatory cytokines such as IL-6, TNF-alpha, and 
IFN-gamma can create an environment conducive 
to viral reactivation. These cytokines can reactivate 
herpesviruses by modulating the expression of viral 
genes and promoting the transition from latency to 
the lytic cycle. SARS-CoV-2 may also directly influ-
ence the reactivation of latent herpesviruses through 
molecular interactions. Additionally, the viral pro-
teins of SARS-CoV-2 can interact with cellular path-
ways that regulate viral latency, thereby facilitating 
the reactivation of latent herpesviruses.

Reactivation of herpesviruses in the context of 
COVID-19 has significant clinical implications. 
Patients experiencing reactivation of EBV, CMV, or 
HHV-6 can present with a range of symptoms that 
overlap with or exacerbate those of PASC, such as 
fatigue, cognitive impairment, and inflammatory 
conditions.

Role of CMV reactivation in the pathogenesis of 
PASC

CMV has been proposed as an indirect contribu-
tor to the long-term symptoms of PASC by induc-
ing immune alterations, thereby aggravating immune 
dysregulation [183]. Primary CMV infection elicits 
a robust and highly differentiated CMV-specific T 
cell response, which persists as a significant propor-
tion of the T cell repertoire, resulting in prolonged 
immune alteration [179, 180]. These specific T cells 
often exhibit signs of immunosenescence, such as 
the loss of CD28 expression and the accumulation 



	 GeroScience

Vol:. (1234567890)

of CD57 and KLRG1 [183]. This immune alteration 
may contribute to SARS-CoV-2 infection-induced 
dysregulation, facilitating CMV replication, while 
CMV-associated T cell changes reduce the efficacy 
of the immune response against SARS-CoV-2. Fur-
thermore, through molecular mimicry, CMV can trig-
ger autoimmune responses, inflammation, and tissue 
damage, exacerbating PASC symptoms [183]. CMV 
reactivation may play a role in neurocognitive dys-
function, brain fog, and musculoskeletal syndromes 
associated with PASC [183]. Although clinical tri-
als have not demonstrated significant CMV viremia 
among PASC patients, elevated antibody titers sug-
gesting viral reactivation are often present [40, 123].

CMV exhibits significant endothelial trophism. 
The virus can infect and establish latency in endothe-
lial cells, leading to chronic endothelial dysfunction. 
Given the endothelial trophism of both SARS-CoV-2 
and CMV, a plausible hypothesis is that the reacti-
vation of CMV and/or other herpesviruses within 
endothelial cells may contribute to the pathogenesis 
of PASC. This hypothesis is supported by several 
observations. First, the presence of CMV in endothe-
lial cells has been causally linked to the impairments 
of endothelium-dependent regulation of blood flow 
and endothelial barrier function [85, 90, 114, 136, 
139–142]. This is particularly relevant given the 
emerging importance of microvascular impairments 
in the pathogenesis of PASC [45, 46, 50, 52, 61, 63, 
65, 184–186]. Reactivation of CMV in endothelial 
cells may potentially cause a range of microvascu-
lar pathologies, which are significant factors in the 
development of PASC. Continuous viral presence 
and activity within endothelial cells can sustain a pro-
inflammatory and pro-thrombotic state, contributing 
to ongoing symptoms such as fatigue, brain fog, and 
cardiovascular issues. CMV reactivation in endothe-
lial cells can lead to the production of pro-inflam-
matory cytokines and chemokines, which enhance 
leukocyte adhesion and transmigration across the 
endothelial barrier. This inflammatory cascade could 
result in neurovascular damage, contributing to per-
sistent low-grade neuroinflammation and impaired 
regulation of cerebral blood flow, conditions com-
monly observed in PASC patients. Moreover, CMV 
reactivation in the endothelial cells of the brain vas-
culature can compromise the integrity of the BBB. 
This compromised BBB allows peripheral inflam-
matory mediators and immune cells to infiltrate the 

central nervous system, exacerbating neuroinflam-
mation. This exacerbated neuroinflammation is likely 
to contribute to neurocognitive symptoms such as 
brain fog and cognitive dysfunction. Importantly, the 
endothelial involvement in herpesvirus reactivation 
is expected to mirror the pathophysiological mecha-
nisms seen in chronic conditions like ME/CFS, which 
is also associated with viral infections and endothe-
lial dysfunction [26, 61, 138, 187–194]. The potential 
role of CMV reactivation in promoting these cerebro-
microvascular and neurological abnormalities under-
scores the need for further studies to elucidate the 
exact mechanisms involved and to explore targeted 
therapeutic interventions. Understanding the conse-
quences of CMV’s endothelial trophism and its impli-
cations for CMV reactivation is crucial for develop-
ing effective treatments for PASC. Further research is 
necessary to investigate the extent of CMV reactiva-
tion in endothelial cells and its direct contribution to 
the pathophysiology of PASC.

Role of EBV reactivation in the pathogenesis of 
PASC

EBV reactivation has been implicated as a potential 
contributor to the pathogenesis of PASC [28, 40, 76, 
79–81, 168, 172, 173, 178, 195–198]. EBV viremia 
can occur among hospitalized, critically ill COVID-
19 patients and may predict the development of PASC 
[80]. Acute SARS-CoV-2 and EBV infections may 
interact under these circumstances [81]. The SARS-
CoV-2 receptor, angiotensin-converting enzyme 2 
(ACE2), promotes the Z transcriptional activator, 
enhancing latent EBV reactivation [81]. EBV reacti-
vation, in turn, increases ACE2 expression on epithe-
lial cells, promoting SARS-CoV-2 viral entry [81].

The reactivation of EBV in the context of COVID-
19 and PASC has significant clinical implications 
[198]. Recent studies have explored the link between 
EBV reactivation and PASC [40]. One study con-
ducted serologic testing for recent EBV and CMV 
infections on 280 adults with post-COVID-19 condi-
tions [40]. Using logistic regression, the study found 
that fatigue and neurocognitive dysfunction were 
significantly associated with EBV early antigen-dif-
fuse IgG (EA-D) positivity or high nuclear antigen 
(EBNA) levels [40]. In another study, the prevalence 
of EBV reactivation was investigated in patients 
21–90  days and over 90  days post-SARS-CoV-2 
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infection [118]. Results indicated that 30.3% of these 
patients had elevated anti-EBV antibody titers, sug-
gesting a similarity in symptomatology between EBV 
reactivation and post-COVID-19 conditions [118]. In 
contrast, an Austrian study involving 400 previously 
SARS-CoV-2-infected patients, of whom 72 devel-
oped PASC, found no EBV viremia in PASC patients 
and no significant differences in EBV serology 
between those with and without PASC [199]. Simi-
lar conclusions were reach by another study, which 
could not detect the presence of EBV using PCR in 
throat washings, stool, and blood samples from post-
COVID-19 patients with neurological symptoms 
[83]. These studies collectively underscore the com-
plex relationship between herpesvirus reactivation 
and the persistence of symptoms in post-COVID-19 
conditions, highlighting the need for further research.

It is hypothesized that EBV reactivation can lead 
to a range of symptoms that overlap with or exacer-
bate those of PASC, including fatigue, neurocogni-
tive dysfunction, and autonomic disturbances. EBV 
reactivation has been associated with neuroinflam-
mation[116], which can contribute to the cognitive 
impairments observed in PASC patients. Microglial 
activation, a hallmark of neuroinflammation, can be 
driven by EBV reactivation and may lead to synaptic 
dysfunction, neuronal injury, and impaired neurogen-
esis [116]. These effects can manifest as brain fog, 
memory disturbances, and reduced cognitive func-
tion, which are commonly reported in PASC patients. 
EBV reactivation during acute SARS-CoV-2 infec-
tion can also contribute to PASC symptoms through 
promoting mitochondrial dysfunction [198].

Although herpesvirus reactivation has been pro-
posed as a contributor to neurological symptoms, 
PCR results of blood or cerebrospinal fluid samples 
have not consistently confirmed this theory [75]. 
Additionally, Williams et al. conducted a study exam-
ining T cell responses against EBV and CMV in 
PASC patients with neurological symptoms compared 
with healthy individuals [195]. Their findings did 
not reveal significant differences in T cell responses 
between the cohorts [195]. However, they did observe 
an increased CD8 + T cell response to non-Spike 
antigens, although this difference has not been con-
sistently confirmed in subsequent studies [195]. Spe-
cific tests for EBV or CMV did not establish a direct 
role of these viruses in the observed symptoms, lead-
ing Williams et al. to propose an indirect association 

mediated by systemic inflammation [195]. This sug-
gests that while herpesvirus reactivation may not be 
the primary cause, it could contribute to the inflam-
matory milieu observed in PASC. Additionally, sys-
temic effects of EBV reactivation include the promo-
tion of a pro-inflammatory and pro-thrombotic state, 
which can exacerbate vascular and endothelial dys-
function. This can contribute to the persistent cardio-
vascular and systemic symptoms seen in PASC, such 
as fatigue and exercise intolerance. Understanding the 
role of EBV reactivation in the pathogenesis of PASC 
is crucial for developing comprehensive treatment 
strategies. Further research is needed to elucidate the 
mechanisms of EBV reactivation and its pathological 
consequences in the context of COVID-19 and PASC 
and to develop effective therapeutic interventions. 
This research should focus on the interplay between 
immune dysregulation, inflammatory responses, and 
viral reactivation to better understand and treat the 
complex symptomatology of PASC.

Role of HHV‑6 reactivation in the pathogenesis of 
PASC

After primary infection, usually in early child-
hood, HHV-6 establishes lifelong latency in various 
cell types, including monocytes, macrophages, and 
CD4 + T lymphocytes. Reactivation of HHV-6 under 
conditions of immune stress during or after an acute 
SARS-CoV-2 infection may significantly contribute 
to the pathogenesis of PASC [81, 82, 175, 177]. The 
ability of HHV-6 to infect endothelial cells and its 
neurotropic nature can have significant implications 
for PASC [148–150, 200]. Reactivation of HHV-6 in 
endothelial cells can potentially lead to endothelial dys-
function, contributing to microvascular impairments 
[200]. In the central nervous system, HHV-6 reactiva-
tion could potentially contribute to neuroinflammation 
and the neurocognitive symptoms observed in PASC. 
The role of HHV-6 as driver in the pathogenesis of 
ME/CFS is increasingly recognized and continuously 
re-emerging in scientific research [182, 189, 191, 192, 
194, 201, 202]. The high prevalence of active HHV-6 
infection in ME/CFS patients, along with the concur-
rent increase in plasma proinflammatory cytokines 
and the correlation between active viral infection and 
PASC-like clinical symptoms of ME/CFS, underscores 
the necessity for in-depth study of herpesvirus reacti-
vation in the context of PASC to better understand its 
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contribution to the pathogenesis of the disease [190, 
193, 194, 203]. This growing body of evidence high-
lights the importance of exploring the role of HHV-6 
and other herpesviruses in general and their micro-
vascular impact in particular, in driving the complex 
symptomatology seen in PASC. Understanding these 
interactions is crucial for developing targeted interven-
tions and improving patient outcomes [204].

Conclusion and future direction for research

PASC presents significant diagnostic challenges due to 
its diverse and often overlapping symptoms (Fig. 1).

The precise pathogenesis of post-acute sequelae 
of SARS-CoV-2 infection remains undetermined, 
complicating efforts to develop effective treatments. 
Numerous studies suggest that herpesvirus reacti-
vation may contribute to PASC, although clinical 
trials have not consistently identified significantly 
elevated viremia levels. Nonetheless, evidence indi-
cates that herpesviruses, particularly CMV, EBV, 
and/or HHV-6, may play an indirect role through 
mechanisms such as microvascular endothelial 
dysfunction, BBB disruption, immune dysregula-
tion, and/or the maintenance of low-grade chronic 
inflammation. The direct infection of endothelial 
cells by SARS-CoV-2 and the potential reactiva-
tion of latent herpesviruses within these cells can 

contribute to the persistent vascular inflammation 
and dysfunction observed in PASC patients. This 
endothelial damage can impair neurovascular cou-
pling, disrupt the BBB, and promote a pro-inflam-
matory state, exacerbating the symptoms of PASC. 
Additionally, elderly patients may be more affected 
by PASC due to age-related immunosenescence 
and impaired antiviral immune responses, which 
heighten their vulnerability to both SARS-CoV-2 
and herpesvirus reactivation. Further research is 
essential to elucidate the exact mechanisms by 
which these viruses interact and contribute to the 
pathogenesis of PASC. Large-scale cohort studies 
and detailed mechanistic investigations are needed 
to confirm these findings and identify specific 
therapeutic targets. Developing targeted therapeu-
tic strategies, such as antiviral treatments and anti-
inflammatory agents, could mitigate the long-term 
effects of PASC and improve the quality of life for 
affected individuals.
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