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Abstract

BackgroundSARS-CoV-2-infected patientsmaydevelop newconditions in the period after
the acute infection. These conditions, the post-acute sequelae of SARS-CoV-2 infection
(PASC, or Long COVID), involve a diverse set of organ systems. Limited studies have
investigated the predictability of Long COVID development and its associated risk factors.
Methods In this retrospective cohort study, we used electronic healthcare records from two
large-scale PCORnet clinical research networks, INSIGHT (~1.4 million patients from New
York) andOneFlorida+ (~0.7millionpatients fromFlorida), to identify factors associatedwith
having Long COVID, and to develop machine learning-based models for predicting Long
COVID development. Both SARS-CoV-2-infected and non-infected adults were analysed
during the period of March 2020 to November 2021. Factors associated with Long COVID
risk were identified by removing background associations and correcting for multiple tests.
ResultsWe observed complex association patterns between baseline factors and a variety
of LongCOVID conditions, andwe highlight that severe acute SARS-CoV-2 infection, being
underweight, and having baseline comorbidities (e.g., cancer and cirrhosis) are likely
associated with increased risk of developing Long COVID. Several Long COVID conditions,
e.g., dementia, malnutrition, chronic obstructive pulmonary disease, heart failure, PASC
diagnosis U099, and acute kidney failure are well predicted (C-index > 0.8). Moderately
predictable conditions include atelectasis, pulmonary embolism, diabetes, pulmonary
fibrosis, and thromboembolic disease (C-index 0.7–0.8). Less predictable conditions
include fatigue, anxiety, sleep disorders, and depression (C-index around 0.6).
Conclusions This observational study suggests that association patterns between
investigated factors and Long COVID are complex, and the predictability of different Long
COVID conditions varies. However, machine learning-based predictive models can help in
identifying patients who are at risk of developing a variety of Long COVID conditions.

The global COVID-19 pandemic starting in late 2019 has led to more than
557 million infections and 6.4 million deaths as of July 14, 20221. Growing
scientific and clinical evidence has demonstrated the existence of potential
post-acute and long-term effects of COVID-19, which affectmultiple organ
systems2 and are referred to as post-acute sequelae of SARS-CoV-2 infection
(PASC, or Long COVID). Recently there have been several retrospective

cohort analyses identifying potential PASC using real-world patient data3–7.
However, research on the predictability of PASC and their associated risk
factors is still limited, andmixed results have been reported. Such predictive
modeling research can help patients and healthcare professionals recognize
the risk of PASC early and inform effective actions. Several studies found
older age, higher severities in the acute phase of SARS-CoV-2 infection8, and
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Plain language summary

Most people who develop COVID-19 make a
full recovery, but somegoon todeveloppost-
acute sequelae of SARS-CoV-2 infection,
commonlyknownasLongCOVID.Up tonow,
we did not know why some people are
affectedby LongCOVIDwhilst others are not.
We conducted a study to identify risk factors
for Long COVID and developed a mathema-
tical modeling approach to predict those at
risk. We find that Long COVID is associated
with some factors such as experiencing
severe acute COVID-19, being underweight,
and having conditions including cancer or
cirrhosis.Due to thewidevarietyof symptoms
definedasLongCOVID, itmaybechallenging
to come up with a set of risk factors that can
predict the whole spectrum of Long COVID.
However, our approach could be used to
predict a variety of Long COVID conditions.
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pre-existing conditions (e.g., hypertension, obesity)maybe associatedwith a
higher risk of developing PASC9–14. By contrast, some studies also reported
that baseline clinical characteristics or demographics were not associated
with PASC12. Twomain challengesmay explain these seemingly conflicting
findings: 1) Prior studies have typically been conducted using patient
cohorts with small sample sizes including only a few hundred or thousand
patients10,15, limiting the generalizability of conclusions derived, and 2)
PASC conditions are highly heterogeneous concerning multi-organ
manifestations6,7, thus their predictabilities and associated risk factors
could be heterogeneous as well.

To fill in the knowledge gap and address these challenges, we con-
ducted a data-driven study on the predictability of a broad spectrum of
incident PASC conditions and to identify their associated factors. We used
two large electronic health records (EHR) cohorts from the PCORnet
clinical researchnetworks (CRN)16, namely INSIGHT17, coveringpatients in
theNewYorkCity (NYC) area, andOneFlorida+18, including patients from
Florida. The INSIGHT and OneFlorida+ were used for primary analyses
and validation respectively. A list of PASC conditions was selected based on
our previousfindings using a high-throughput data-driven analysis pipeline
and existing evidence or clinical knowledge (See the method section for a
detailed list of PASC diagnoses), which coveredmultiple organ systems6,7,19.
Baseline covariates included basic demographics (e.g., age, gender, race,
ethnicity), socioeconomic status, healthcare utilization history, body mass
index, the period of infection, comorbidities, and the care settings in the
acute phase including hospitalization and ICU stay. We used a regularized
multivariate Cox proportional hazard model to uncover association maps
between the abovementioned baseline covariates and different incident
PASCconditions.Ofnote, the factors associatedwithPASCconditionswere
identified by removing background associations among non-infected
patients and being selected with corrected significance levels due to multi-
ple testings.We observed that severe acute SARS-CoV-2 infection, older age
(≥ 75), female, extremes of weight, and having baseline comorbidities (e.g.,
cancer, chronic kidney disease, cirrhosis, coagulopathy, pregnancy, pul-
monary circulation disorders) were associated with increased risk of a list of
incident PASC patterns. Furthermore, we highlight that severe acute
infections, being underweight, and having baseline conditions including
cancer or cirrhosis are associated with having at least one PASC condition.
We furtherdevelopedmachine learning-basedpredictionmodels to identify
patients who were more likely to develop particular incident PASC condi-
tionswith their baseline characteristics and acute severity.We compared the
performanceofmachine learningmodelswithdifferent levels of complexity,
including regularized Cox proportional hazard model, regularized logistic
regression, gradient boostingmachine, and deep neural network in both the
survival analysis setting andbinary classification setting.Weobserved that it
might be difficult to predict patients who will have at least one PASC
condition (denoted as Any PASC) because a variety of PASC conditions
were less predictable and were less associated with upfront disease severity.
However, a range of PASC conditions were reliably predictable (e.g.,
dementia,myopathies, cerebral ischemia,COPD,heart failure, hypotension,
malnutrition, acute kidney failure, and non-specific PASCdiagnosesU099).

In all, complex association patterns and a lack of predictability of
several PASC conditions may represent a challenge for managing hetero-
geneous PASC conditions. However, leveraging machine learning-based
predictive models and EHR databases can help in identifying patients who
are at risk of developing different incident PASC conditions. Among
complex association patterns, we highlight severe acute infections, being
underweight, and having baseline conditions including cancer or cirrhosis
are likely associatedwith increased risk of having incident PASC in the post-
acute phase, suggesting further investigation of the association between
COVID-19 treatment in adults who are at high risk for severe COVID-19
and the risk of PASC beyond the acute phase. This study is part of the NIH
Researching COVID to Enhance Recovery (RECOVER) Initiative, which
seeks to understand, treat, and prevent the post-acute sequelae of SARS-
CoV-2 infection (PASC).

Methods
Data
This study leveraged two large-scale de-identified electronic healthcare
record warehouses from the INSIGHT Clinical Research Network (CRN)17

and theOneFlorida+CRN18. The INSIGHTCRN contained longitudinally
linked data of approximately 12 million patient encounters at hospitals in
theNewYorkCitymetropolitan area, and theOneFlorida+CRNcontained
the EHRdata of nearly 15million patients fromFlorida and selected cities in
Georgia and Alabama. The use of the INSIGHT data was approved by the
Institutional Review Board (IRB) of Weill Cornell Medicine following NIH
protocol 21-10-95-380 with protocol title: Adult PCORnet-PASCResponse
to the Proposed Revised Milestones for the PASC EHR/ORWD Teams
(RECOVER). The use of the OneFlorida+ data for this study was approved
under the University of Florida IRB number IRB202001831. All EHRs used
in this study were appropriately deidentified and thus no informed consent
from patients was obtained.

Definition of Long COVID
The current definition of Post-acute Sequelae of SARS-CoV-2 (PASC, or
Long COVID) in the RECOVER protocols is “ongoing, relapsing, new
symptoms, or other health effects occurring four or more weeks after the
acute phase of SARS-CoV-2 infection”7,20.We examined a broad list of likely
PASC conditions as outcomes, including depressive disorders, anxiety
disorder, unspecified post-COVID-19 conditions encoded by the ICD-10
code U099 (in effect since October 2021 and we used ICD-10 code B948
before the implementation of U099)21, fever, malaise and fatigue, dizziness,
malnutrition,fluiddisorders, diabetesmellitus, edema, hair loss, paresthesia,
dermatitis, chronic obstructive pulmonary disease (COPD), atelectasis,
pulmonary fibrosis, dyspnea, acute pharyngitis, acute bronchitis, dementia,
myopathies, cerebral ischemia, encephalopathy, cognitive problems, sleep
disorders, headache,muscleweakness,fibromyalgia, joint pain, acute kidney
failure, cystitis, genitourinary problems, constipation, gastroparesis,
abdominal pain, gastroesophageal reflux disease, heart failure, hypotension,
pulmonary embolism, thromboembolism, abnormal heartbeat, chest pain,
and anemia.We compiled this list based on both our previous study6,7,19,22,23

and evidence from other literature3,4,7. An incident condition is defined in
the SARS-CoV-2 infected patients who had the condition from 31 days to
180 days after the SARS-CoV-2 infection but did not have the condition
three years to seven days before. See Supplementary Data 1 for the diag-
nostic code list.

Eligibility criteria and study population
Our study included adult patients aged 20 years or older with at least one
SARS-CoV-2 polymerase chain reaction (PCR) test or antigen laboratory
test between March 1st, 2020, and November 30th, 2021. We further
required at least one diagnosis code within three years to seven days before
the index date (referred to as the baseline period), and at least one diagnosis
code from day 31 to day 180 after the index date (referred to as the post-
acute phase or follow-up period), to ensure that patients were connected to
the healthcare system and were alive beyond the acute phase. We followed
each patient from day 31 after his/her index date until the day of the first
target outcome, documented death, the latest date of any documented
records in the database, 180 days after the baseline, or the end of our
observational window (December 31, 2021), whichever came first. We
leveraged two exposure groups: a) the SARS-CoV-2 infected group, for the
association study andpredictivemodeling, andb) thenon-infected group, to
rule out background associations that were not specific to COVID-19
infection. The infected group included patients with any positive SARS-
CoV-2 PCR test or positive antigen laboratory test. The index date was
defined as the date of the first documented positive PCR or antigen test for
patients in the infected group. The non-infected group included patients
whose SARS-CoV-2 PCR or Antigen tests were all negative throughout the
entire study period and with no documented COVID-19-related diagnoses
at any time. The index date for patients in the non-infected group was
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defined as the date of the first negative PCR or antigen test. The patient
inclusion and exclusion cascades are illustrated in Fig. 1.

Covariates
We built a list of 89 covariates that are potentially associated with PASC,
including basic demographics (e.g., age, gender, race, ethnicity), socio-
economic status in terms of Area Deprivation Index (ADI)21, healthcare
utilization history, body mass index, the timing of infection, comorbidities,
and the care settings in acute phase including hospitalization and ICU
admission. For each of the categorical covariates, we defined its reference
group the same as prior studies for acute SARS-CoV-2 infection8. We
accounted for these baseline covariates by multivariate Cox proportional
hazard model in our association analyses.

We collected clinical features in the baseline period (3 years to 1 week
before lab-confirmed SARS-CoV-2 infection) and the severity of acute
infection (1 week before to 2 weeks after lab-confirmed SARS-CoV-2
infection). Age was categorized into 20–39 years, 40–54 years, 55–64 years,
65–74 years, and 75+ years groups. We set 55–64 as the reference group.
Gender was grouped into female and male (reference). Only three patients
in INSIGHT were identified as other/missing gender who were excluded.
The race was categorized into Asian, Black or African American, White
(reference), other or missing. Ethnicity was grouped into Hispanic, not
Hispanic (reference), and other/missing.We used the national-level ADI to
capture the socioeconomic disadvantage of patients' residential
neighborhoods24. Larger ADI values indicate mode socioeconomically
deprived status. Missing ADI value was imputed with median ADI per site.
The ADI is a ranking from 1 to 100 with 1 and 100 representing the lowest
and thehighest level of disadvantage, respectively.WegroupedADI intofive
categories and set the ADI category 1–20 as the reference group. Baseline
healthcare utilization up to three years before the index date was measured
according to their care setting. For each inpatient, outpatient, and emer-
gency department encounter, we categorized each setting into 0 visits
(reference group), 1 or 2 visits, and 3 or more visits, respectively. We also
considered the infection time, which was grouped into March 2020–June
2020, July 2020–October 2020, November 2020–February 2021, March
2021–June 2021, and July 2021–November 2021.We set thefirstwave of the
pandemic from March 2020 to June 2020 as the reference group. Of note,
the third wave from July 2021 to November 2021 period was dominated by

the Delta variant. Body mass index (BMI) was grouped according to the
WHO classification, BMI < 18.5 as underweight, BMI 18.5–24.9 as normal
weight (reference), BMI 25–29.9 as overweight, BMI ≥ 30 obese, and set
missing value as a separate group.

A wide range of baseline clinical comorbidities was collected, based on
the Elixhauser comorbidities, conditions recommended by our clinician
group, and related medications. Patients were ascertained as having a
condition if they had at least two corresponding diagnoses documented
during the baseline period7. We also counted the number of pre-existing
conditions and grouped them into no comorbidity (reference)1–5, or more.

Association analysis
To uncover potentially complex association maps between baseline con-
ditions and various incident PASC conditions, for each target PASC
condition, we performed association analysis using the following two
steps. In step I (multivariate association analysis for each PASC condi-
tion), we built a separate multivariate Cox proportional hazard model for
each PASC condition in SARS-CoV-2 infected patients to assess asso-
ciations of covariates and time to the first incident PASC event of interest
event or censoring in the follow-up period (31-180 days after COVID-19
confirmation). The censoring event is defined as the earliest event of
documented death, loss of follow-up in the database (the date of the last
documented record in the EHR systems), 180 days after the baseline, or
the end of our observational window (December 31, 2021). Fully adjusted
hazard ratios (aHR) of each covariate and target PASC event were esti-
mated. In step II (marginal associationsdue to SARS-CoV-2 infection), we
built another multivariate Cox proportional hazard model for all the
patients containing both SARS-CoV-2 infected andnon-infected patients.
Themodel inputs include two parts. One is the set of covariates. The other
is the set of interaction terms defined as the product of each covariate and
SARS-CoV-2 infection status (1 for SAR-CoV-2 infected patients and 0
for non-infected control patients) on the outcome condition. In this way,
the coefficient of a particular covariate captured its association with the
outcome condition for patients who were not infected by SARS-CoV-2,
and the coefficient of its corresponding interaction term captured the
“quantitative modifications” of such association for patients who were
infected by SARS-CoV-2. Fully aHR of each covariate and interaction
term was estimated on infected and non-infected combined patients.

Fig. 1 | Patient selection from the INSIGHT and
OneFlorida+ Clinical Research Networks, March
2020 to November 2021. a the INSIGHT cohort,
and (b) the OneForida+ cohort.
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A covariate was identified as a likely risk factor of a particular PASC
condition if it satisfied the following four criteria: C1, The adjusted hazard
ratio (aHR) estimated from the infected patients in Step I was greater than 1
when comparedwith the reference group; C2, The p-value of the above aHR
by the Wald Chi-Square test was smaller than 0.000562, which was cor-
rected by the Bonferroni method25 for multiple testing; C3, the aHR of the
interaction term of the corresponding covariate, namely the marginal
increased riskdue to SARS-CoV-2 infection, shouldbegreater than1 inStep
II; and C4, the p-value of the aHR of the interaction term by theWald Chi-
Square test in the secondCoxwas smaller than0.05.Of note, Criterion 3 and
Criterion 4 try to identify the risk associations that have the portion that can
be attributed to the SARS-CoV-2 infection, in addition to the background
associations in non-infected patients. In summary, to uncover potentially
complex association maps and to rule out background associations not
specific to SARS-CoV-2 infection distinguish our method from existing
association analysis literature.

Machine learning-based predictive modeling
To uncover the predictability of different PASC conditions, we build pre-
dictive models for each PASC condition by examining machine learning
models with varying complexity (including regularized Cox hazard model,
regularized logistic regression, gradient boosting machine, and deep neural
networks) in both survival analysis and binary classification settings.

For the survival analysis setting, we used a multivariate Cox propor-
tional hazard model with L2 norm regularization to predict the time to the
outcome event. For the binary classification setting, the occurrence of the
target event in the follow-up period was labeled as 1 and 0 otherwise. We
used logistic regression with L2 norm regularization, gradient boosting
machine with random forest base learner, and deep feed-forward neural
network. For each of the abovementioned models, the best model was
selected by grid search (see details in the following sensitivity analysis
paragraph) in a pre-defined hyper-parameter space through repeated cross-
validation (ten times, five folds), detailed as follows: a) the regularized
logistic regression, we adopted the L2-norm penalty and searched for the
inverse of regularization strength from 10�3 to 103 with 0.5 as the sampling
step size; b) the gradient boostingmachine with a random forest as the base
learner26, we searched hyperparameters frommaximum depth (3,4,5), max
number of leaves in one tree (10, 20, 30), and a minimal number of data in
one leaf (30); c) deep forward neural network, we used the ReLU (Rectified
Linear Unit) activation function for the hidden layer and searched the
hidden layers ((32,), (64,), (128,), (32, 32), (64, 64), (128, 128)), and learning
rate (0.001, 0.01, 0.1). For each of the above-mentioned models, the best
model was selected by grid search of the corresponding hyperparameter
space through repeated cross-validation (ten times, five folds). In the
repeated cross-validation process, we set one of the folds as the test set and
the rest of the data as the training set. The C-index and the area under the
receiver operating characteristic curve (AUROC) were used to measure the
predictive performance in the survival setting and binary classification
setting, respectively.

The concordance index (C-index) and the area under the receiver
operating characteristic curve (AUROC) were used to evaluate survival
prediction performance and binary prediction performance respectively.
Both twomeasures range from 0 to 1 with 0.5 indicating random guess and
1 indicating perfect prediction. The 95% confidence interval of the final
performance was estimated by 1000-times bootstrapping performance on
each of the testing datasets in repeated cross-validation.

Stratified analysis
The stratified analysis was conducted by stratifying patients by their
severity in the acute infection phase (hospitalized or non-hospitalized)
and then performing statistical analysis within each stratum. The non-
infected control patients were also stratified according to the hospitalized
or non-hospitalized during the acute period (1 day before to 30 days after
the index date), to capture background associations within each subgroup
population.

Sensitivity analysis
To get robust conclusions, we conducted the following sensitivity analyses. In
addition to fully-adjusted association analysis, we also conduct univariate
association analysis by using a univariate Cox model for each covariate. We
also tested the impact of lifting Step II, namely without ruling out background
associations not specific to SARS-CoV-2 infection, on the identified risk
associations. On the other hand, we also investigate a shortened list of asso-
ciations if we require the marginally increased risk to be significant. Specifi-
cally, we require the p-value of the Wald Chi-Square test of the interaction
terms in the second Cox proportional hazard model <0.05. For the predictive
modeling,we testedhowdifferent feature engineeringmethodswill impact the
predictive modeling. Rather than clinician-selected baseline predictors, we
used amore high-dimensional feature engineering approach by using the first
3-characters of ICD-10 codes and medication at the ingredient level. These
ICD-10 diagnosis codes andmedications were selected to construct the input
feature vectors of the prediction model based on the significant difference (P-
value less than 0.0001 byFisher’s exact test) betweenpatientswith positive and
negative PASC conditions results. After the feature selection process, the
selected ICD-10 diagnosis codes,medication, and collected baseline covariates
were constructed to represent every PASC condition.

Validation analysis and generalizability
To get generalizable conclusions, we further replicated the abovementioned
association analyses andpredictive analyses in theOneFlorida+ cohort. The
cohort selection and modeling strategies were the same as our primary
analyses on the INSIGHT cohort.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Factors associated with different PASC conditions
Herewe analyzed associationmaps between baseline covariates and the risk
of developing a range of incident PASC conditions. We quantified the
association by three metrics including a) the unadjusted hazard ratio (HR),
b) the fully adjusted hazard ratio (aHR), and c) the fully aHR filtered by
significance corrected by multiple tests and positive marginal risks over the
control group. We developed our primary results on the INSIGHT cohort
(See the validation results on the OneFlorida+ cohort in the validation
section) which included 35,275 adult patients with lab-confirmed SARS-
CoV-2 infection and 326,126 non-infected control patients from March
2020 to November 2021 (see the inclusion-exclusion cascade in Fig. 1).
Overall, among 35,275 enrolled SARS-CoV-2 infected patients in the
INSIGHTcohort, 17,571 (49.8%) of themhad at least one incident potential
PASC condition (Table 1). The univariate HR and multivariate aHR
between the covariates and the risk of getting at least one PASC condition
were summarized in Table 2. Moreover, Fig. 2 summarizes fully adjusted
aHRs that were significant under multiple tests (p-value < 0.000562 by the
Wald Chi-Square test) and showed positive marginal risks over the control
group. We summarize association results as follows.

The severity of acute infection
Increased severity of the acute SARS-CoV-2 infection (according to the care
settings) was associated with a higher risk of being diagnosed with incident
conditions in the post-acute period. Overall, a higher risk of getting any
incident diagnosis was observed in patients who were hospitalized during
the acute phase (aHR 1.29 (1.24–1.33)) or in ICU (aHR 1.40 (1.32–1.49))
compared to patientswhowere not hospitalized during the acute phase (as a
reference group, seeTable 2 andFig. 2). Specifically, as summarized in Fig. 2,
severe acute infection was associated with a wide range of incident PASC
conditions compared to non-hospitalized patients: the hospitalized patients
showed higher risk of being diagnosed with sleep disorders (1.2-fold),
chronic obstructive pulmonary disease (COPD, 1.7-fold), pulmonary
fibrosis (2.1-fold), dyspneas (or shortness of breath, 1.8-fold), pulmonary
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embolism (1.4-fold), chest pain (1.3-fold), malnutrition (2.0-fold); while the
ICU patients showed a higher risk of being diagnosed with myopathy (4.7-
fold), cognitive problems (2.0-fold), anxiety disorder (1.8-fold), pulmonary
fibrosis (2.1-fold), malnutrition (2.6-fold), malaise and fatigue (2.1-fold). In
addition, concerning being diagnosedwith general PASC codes U099/B948
(the U099 code, namely unspecified post-COVID-19 condition, was
effective since 10/1/2021), hospitalized or ICU patients had a 2.2-fold and
4.3-fold higher risk respectively than non-hospitalized patients.

Age
Patients aged 75 or older showed an increased risk of being diagnosedwith a
wide range of potential PASC conditions in the post-acute infection phase,
including dementia (5.8-fold higher), cerebral ischemia (2.1-fold), mal-
nutrition (1.8-fold) compared to patients were 55–64 years old (as
reference).

Gender and race
Female patients exhibited a 4.3-fold increased risk of being diagnosed with
incident hair loss in the post-acute infection period compared to male

Table 1 | Description of the lab-confirmed SARS-Cov-2
positive patients, with the number of at least one incident
PASC diagnosis by patient characteristics, INSIGHT, March
2020–November 2021a

Characteristics Number of patients
with lab-confirmed
SARS-CoV-2
infection
(columns %)

Number of patients with
lab-confirmed SARS-
CoV-2 infection and with
at least one incident
PASC condition
(columns %)

Total 35,275 17,571 (49.8)

The Severity of Acute Infection—no. (%)

Not hospitalized 22,148 (62.8) 9809 (55.8)

Hospitalized w/o ICU 11,480 (32.5) 6611 (37.6)

ICU 1647 (4.7) 1151 (6.6)

Age group—no. (%)

20- < 40 years 9529 (27.0) 3875 (22.1)

40- < 55 years 7975 (22.6) 3850 (21.9)

55- < 65 years 6965 (19.7) 3606 (20.5)

65- < 75 years 5712 (16.2) 3170 (18.0)

75+ years 5094 (14.4) 3070 (17.5)

Sex—no. (%)

Female 20,686 (58.6) 10,295 (58.6)

Male 14,586 (41.3) 7275 (41.4)

Race—no. (%)

Asian 1736 (4.9) 799 (4.5)

Black 7791 (22.1) 4029 (22.9)

White 12,233 (34.7) 5896 (33.6)

Other 9844 (27.9) 5208 (29.6)

Missing 3671 (10.4) 1639 (9.3)

Ethnic group—no. (%)

Hispanic 10,658 (30.2) 5789 (32.9)

Not Hispanic 20,838 (59.1) 10,305 (58.6)

Other/Missing 3779 (10.7) 1477 (8.4)

Median area deprivation index (IQR)—rank

ADI1-19 25,611 (72.6) 12,715 (72.4)

ADI20-39 7891 (22.4) 3962 (22.5)

ADI40-59 1126 (3.2) 550 (3.1)

ADI60-79 162 (0.5) 80 (0.5)

ADI80-100 485 (1.4) 264 (1.5)

Body mass index

BMI: <18.5 underweight 6419 (18.2) 3685 (21.0)

BMI: 18.5- < 25 normal
weight

6431 (18.2) 3272 (18.6)

BMI: 25- < 30
overweight

8116 (23.0) 4001 (22.8)

BMI: ≥30 obese 9751 (27.6) 4918 (28.0)

BMI: missing 4558 (12.9) 1695 (9.6)

Index periods of patients—no. (%)

03/20–06/20 11,235 (31.8) 5971 (34.0)

07/20–10/20 2018 (5.7) 1001 (5.7)

11/20–02/21 14,637 (41.5) 7256 (41.3)

03/21–06/21 5573 (15.8) 2802 (15.9)

07/21–11/21 1812 (5.1) 541 (3.1)

Table 1 (continued) | Description of the lab-confirmed SARS-
Cov-2 positive patients, with the number of at least one
incident PASC diagnosis by patient characteristics, INSIGHT,
March 2020–November 2021a

Characteristics Number of patients
with lab-confirmed
SARS-CoV-2
infection
(columns %)

Number of patients with
lab-confirmed SARS-
CoV-2 infection and with
at least one incident
PASC condition
(columns %)

Pre-existing conditions—no. (%)b

No comorbidity 10,960 (31.1) 4664 (26.5)

1 comorbidity 6277 (17.8) 3012 (17.1)

2 comorbidities 3747 (10.6) 1872 (10.7)

3 comorbidities 3008 (8.5) 1571 (8.9)

4 comorbidities 2437 (6.9) 1346 (7.7)

≥5 comorbidities 8846 (25.1) 5106 (29.1)

Anemia 4862 (13.8) 2717 (15.5)

Arrhythmia 5350 (15.2) 3072 (17.5)

Asthma 3950 (11.2) 2179 (12.4)

Cancer 3616 (10.3) 2082 (11.8)

Chronic Kidney Disease 5126 (14.5) 2995 (17.0)

Chronic Pulmonary
Disorders

6209 (17.6) 3511 (20.0)

Congestive Heart
Failure

3682 (10.4) 2203 (12.5)

Coronary Artery
Disease

4658 (13.2) 2652 (15.1)

Diabetes 7681 (21.8) 4310 (24.5)

Hypertension 13,796 (39.1) 7687 (43.7)

MentalHealthDisorders 3682 (10.4) 2129 (12.1)

Prescription of
Corticosteroids

4999 (14.2) 2695 (15.3)

Prescription of
Immunosuppressant
drug

2110 (6.0) 1086 (6.2)

aThe SARS-CoV-2-positive patients were identified by polymerase chain reaction (PCR) test or
antigen test. The percentage may not sum up to 100 because of rounding. Category names are in
bold.
bCoexisting conditions existed if two records in the 3 years before the index event. See all pre-
existing conditions in Table 2.
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Table 2 | Hazard ratios, 95% confidence intervals, and −log10(P values) for having at least one Post-acute Sequelae of SARS-
CoV-2 Infection (PASC) condition, INSIGHT cohort, March 2020–November 2021a

Covariate Univariate HR (95% CI) Univariate −log10(P value) Fully adjusted HR (95% CI) Fully adjusted −log10(P value)

The severity of acute infection

Not hospitalized 1.00 (ref) 1.00 (ref)

Hospitalized 1.48 (1.43–1.52) 141.6 1.29 (1.24–1.33) 46.4

ICU 1.46 (1.38–1.56) 34.3 1.40 (1.32–1.49) 25.9

Age group

20–39 years 0.78 (0.75–0.81) 31.8 0.88 (0.84–0.92) 7

40–54 years 0.93 (0.90–0.97) 2.9 0.99 (0.95–1.03) 0.2

55–64 years 1.00 (ref) 1.00 (ref)

65–74 years 1.12 (1.07–1.17) 6.5 1.06 (1.01–1.11) 1.8

≥75 years 1.28 (1.22–1.34) 25.9 1.14 (1.09–1.20) 6.7

Sex

Male 1.00 (ref) 1.00 (ref)

Female 0.97 (0.94–1.00) 1.4 1.04 (1.01–1.07) 1.9

Race

White 1.00 (ref) 1.00 (ref)

Asian 0.91 (0.85–0.98) 2 0.95 (0.89–1.02) 0.7

Black 1.09 (1.05–1.13) 4.9 1.05 (1.01–1.09) 1.6

Other 1.11 (1.07–1.15) 8.3 1.01 (0.97–1.05) 0.2

Missing 0.90 (0.86–0.95) 4 1.00 (0.95–1.06) 0

Ethnic group

Not Hispanic 1.00 (ref) 1.00 (ref)

Hispanic: Yes 1.11 (1.08–1.15) 10.8 1.09 (1.05–1.14) 4.4

Other or missing 0.76 (0.73–0.81) 23.4 0.86 (0.81–0.91) 6.9

No. of hospital visits in the past 3 yrs

Inpatient 0 1.00 (ref) 1.00 (ref)

Inpatient 1–2 1.16 (1.12–1.20) 15.3 0.96 (0.92–1.00) 1.3

Inpatient ≥3 1.17 (1.11–1.23) 8.6 0.87 (0.82–0.93) 4.1

Outpatient 0 1.00 (ref) 1.00 (ref)

Outpatient 1–2 0.71 (0.66–0.76) 20.3 0.80 (0.74–0.86) 9

Outpatient ≥3 0.62 (0.58–0.66) 57.7 0.64 (0.60–0.68) 47.1

Emergency 0 1.00 (ref) 1.00 (ref)

Emergency 1–2 1.17 (1.13–1.21) 19.3 1.05 (1.01–1.08) 1.9

Emergency ≥3 1.17 (1.12–1.22) 13.6 1.02 (0.97–1.07) 0.4

Median area deprivation index (rank)

ADI1-19 (least deprived) 1.00 (ref) 1.00 (ref)

ADI20-39 0.99 (0.96–1.03) 0.2 0.97 (0.93–1.00) 1.2

ADI40-59 0.97 (0.89–1.05) 0.4 0.96 (0.89–1.05) 0.4

ADI80-100 1.09 (0.96–1.22) 0.8 0.98 (0.87–1.10) 0.1

Body mass index (kg/m2)

BMI: 18.5- < 25 normal 1.00 (ref) 1.00 (ref)

BMI: <18.5 underweight 1.18 (1.13–1.24) 13.3 1.17 (1.12–1.23) 10.8

BMI: 25- < 30 overweight 0.97 (0.93–1.01) 0.9 0.97 (0.93–1.01) 0.8

BMI: ≥30 obese 0.98 (0.94–1.02) 0.4 0.98 (0.93–1.02) 0.6

BMI: missing 0.69 (0.65–0.73) 40.4 0.82 (0.77–0.87) 11.1

Infection period

03/20–06/20 1.00 (ref) 1.00 (ref)

07/20–10/20 0.95 (0.89–1.01) 1.1 0.98 (0.92–1.05) 0.2

11/20–02/21 0.95 (0.92–0.98) 3.1 0.99 (0.96–1.03) 0.1

03/21–06/21 1.07 (1.02–1.11) 2.5 1.07 (1.02–1.12) 2.5

07/21–11/21 1.42 (1.30–1.54) 14.8 1.55 (1.42–1.69) 21.5
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Table 2 (continued) | Hazard ratios, 95%confidence intervals, and−log10(P values) for having at least onePost-acute Sequelae
of SARS-CoV-2 Infection (PASC) condition, INSIGHT cohort, March 2020–November 2021a

Covariate Univariate HR (95% CI) Univariate −log10(P value) Fully adjusted HR (95% CI) Fully adjusted −log10(P value)

No. of pre-existing conditions

No comorbidity 1.00 (ref) 1.00 (ref)

1 comorbidity 1.15 (1.10–1.20) 9.3 1.07 (1.02–1.12) 2.1

2 comorbidities 1.19 (1.13–1.25) 10.2 1.04 (0.98–1.10) 0.7

3 comorbidities 1.24 (1.17–1.31) 13.6 1.03 (0.97–1.10) 0.5

4 comorbidities 1.34 (1.26–1.42) 21.7 1.08 (1.01–1.16) 1.6

≥5 comorbidities 1.43 (1.38–1.48) 78.6 1.05 (0.97–1.13) 0.6

Pre-existing conditions

Alcohol Abuse 1.18 (1.09–1.28) 4 0.96 (0.88–1.05) 0.4

Anemia 1.21 (1.16–1.26) 18.6 1.00 (0.95–1.05) 0

Arrhythmia 1.28 (1.23–1.33) 33.7 0.98 (0.93–1.02) 0.5

Asthma 1.16 (1.11–1.21) 10.1 1.05 (0.98–1.12) 0.7

Cancer 1.25 (1.19–1.31) 20.7 1.13 (1.07–1.18) 6

Chronic kidney disease 1.31 (1.26–1.36) 39.6 1.05 (1.00–1.10) 1.1

Chronic pulmonary disorders 1.23 (1.18–1.27) 26.7 1.03 (0.96–1.10) 0.4

Cirrhosis 1.43 (1.29–1.58) 11.1 1.22 (1.10–1.35) 3.6

Coagulopathy 1.34 (1.27–1.41) 26.5 1.07 (1.01–1.14) 1.9

Congestive heart failure 1.32 (1.26–1.38) 32.6 1.04 (0.98–1.09) 0.8

COPD 1.29 (1.22–1.38) 15 0.98 (0.90–1.05) 0.3

Coronary artery disease 1.24 (1.19–1.29) 23.3 0.99 (0.94–1.04) 0.2

Dementia 1.46 (1.37–1.56) 27.3 1.03 (0.96–1.11) 0.4

Diabetes type 1 1.22 (1.07–1.38) 2.7 1.11 (0.98–1.25) 0.9

Diabetes type 2 1.23 (1.18–1.27) 30.4 0.99 (0.93–1.06) 0.1

End stage renal disease/dialysis 1.23 (1.15–1.31) 8.9 1.03 (0.96–1.11) 0.4

Hemiplegia 1.20 (1.06–1.36) 2.5 0.96 (0.85–1.09) 0.3

Herpes Zoster 0.99 (0.83–1.17) 0 0.89 (0.75–1.05) 0.8

HIV 1.03 (0.92–1.16) 0.2 0.93 (0.83–1.04) 0.7

Hypertension 1.28 (1.24–1.31) 57.2 1.01 (0.97–1.06) 0.3

Inflammatory bowel disorder 0.99 (0.86–1.15) 0 0.99 (0.86–1.14) 0.1

Lupus or SLE 1.04 (0.89–1.21) 0.2 0.94 (0.81–1.10) 0.4

Mental health disorders 1.24 (1.19–1.30) 20.4 1.08 (1.03–1.13) 2.5

Multiple sclerosis 1.04 (0.85–1.27) 0.2 1.03 (0.85–1.25) 0.1

Obstructive sleep apnea 1.09 (1.03–1.16) 2.5 0.98 (0.92–1.04) 0.3

Other substance abuse 1.19 (1.12–1.26) 8.5 1.06 (1.00–1.14) 1.2

Parkinson’s disease 1.15 (0.96–1.37) 0.9 0.90 (0.75–1.07) 0.7

Peripheral vascular disorders 1.23 (1.16–1.30) 13.3 0.99 (0.93–1.05) 0.1

Pregnant 0.70 (0.65–0.77) 15.5 0.79 (0.72–0.86) 6.7

Pulmonary circulation disorder 1.39 (1.30–1.49) 19.7 1.09 (1.01–1.18) 1.6

Rheumatoid arthritis 1.15 (1.03–1.29) 1.9 1.04 (0.93–1.17) 0.3

Seizure/epilepsy 1.22 (1.11–1.34) 4.6 1.05 (0.96–1.16) 0.6

Severe obesity (BMI ≥ 40 kg/m2) 1.09 (1.03–1.15) 2.5 1.02 (0.96–1.08) 0.2

Sickle cell 1.07 (0.90–1.26) 0.3 1.01 (0.85–1.20) 0

Weight loss 1.38 (1.29–1.47) 21.5 1.09 (1.02–1.17) 1.8

Corticosteroids drugs 1.09 (1.05–1.14) 4.5 0.98 (0.94–1.03) 0.3

Immunosuppressant drugs 1.01 (0.95–1.07) 0.1 0.91 (0.85–0.97) 2.4

COPD chronic obstructive pulmonary disease, SLE systemic lupus erythematosus.
aRef reference group, 95% CI 95% confidence interval. Risks in each categorical class were compared to the reference. −log10 (p-value), the larger, the more significant. Two reference values are
−log10(0.05) = 1.3, −log10(0.01) = 2. See the PASC definition in the method section. See the adjusted covariates in the method section. Category names are in bold.
bPre-existing conditions were ascertained existence if two records in the past 3 years prior to index event.
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patients. Patients who were self-identified as black exhibited a 1.9-fold
increased risk of being diagnosed with incident diabetes mellitus than
patients who were self-identified as white, but not significant regarding
Criterion 4 (method-association analysis section).

Body mass index
Patients who were underweight (BMI < 18.5 kg/m2) were at a 1.2-fold
higher risk of being diagnosed with any incident PASC conditions than
those with normal BMI (BMI from 18.5 to 24.9 kg/m2). Specifically,
underweight patients were at increased risk of being diagnosed with mal-
nutrition (1.4-fold) and diabetes mellitus (1.6-fold).

Period of infection
We observed that patients who got infected from July 2021 to November
2021, which was dominated by the Delta variant of SARS-CoV-227, showed
an increased risk of being diagnosed with incident acute pharyngitis (3.2-
fold) in the post-acute infection period compared to patients who got
infected during March 2020–June 2020 (the 1st wave) as the reference
period.

Pre-existing conditions
As shown in Fig. 2, having five or more baseline conditions was associated
with an increased risk of potential PASC diagnoses in the post-acute phase,

including anemia (2.0-fold), fluid disorders (2.0-fold), acute kidney failure
(1.3-fold) than patients without documented baseline conditions. Specifi-
cally, cancer patients showed increased risk in several post-acute conditions
including atelectasis, fever, anemia, pulmonary fibrosis (1.5-fold), hypo-
tension (1.7-fold), malnutrition (2.2-fold), and fibromyalgia (1.3-fold)
compared to thosewithout cancerdiagnoses at baseline. Thosewithbaseline
pulmonary circulation disorder showed a 3.3-fold increased risk of pul-
monary embolism than patients without this condition at baseline. Patients
with weight loss at baseline were at a higher risk of being diagnosed with
unspecified PASC diagnoses U099/B948 (2.2-fold) and malaise and fatigue
(1.4-fold) than patients without the weight loss diagnosis at baseline.

Associations stratified by acute care settings
We further conducted analyses to examine the associations between base-
line factors and incident PASC conditions among subpopulations stratified
by their care settings in the acute phase (hospitalized versus non-hospita-
lized). The same analytics and screen criteria were used in the subgroup
analyses as we did in the primary analyses. Different association patterns
were observed across the two different settings as shown in Fig. 3. For
patients who were not hospitalized during acute infection, being older age
(≥75 years old) and having baseline cancer were associated with an
increased risk of being diagnosed with a range of conditions in the post-
acute period. However, patients who were hospitalized during their acute

Fig. 2 | Identified risk factors associated with
incident PASC conditions from the INSIGHT
cohort, March 2020 to November 2021. The
adjusted hazard ratios of different factors were
reported by applying screen criteria C1–C3. The
associations whose marginal increased risks than
non-infected control patients were also significant
regarding criteria C4 were highlighted in purple
squares. See details of C1-4 in the method-
association analysis section. The color bar represents
different risk levels. Any PASC represents having at
least one of the conditions below. The color panels
represent different organ systems, including (from
top to bottom): the nervous system or mental dis-
orders, skin, respiratory system, circulatory system,
endocrine and metabolic, digestive system, geni-
tourinary system, and other signs. ICD-10 codes
B948 (sequelae of other specified infectious and
parasitic diseases) and U099 (post-COVID-19
condition, unspecified) were used to capture general
PASC diagnoses. Source data are provided in Sup-
plementary Data 2.

Any PASC Nervous, Mental Skin Respiratory Circulatory, Blood

Endocrine Digestive Genitourinary Others
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infection were in ICU or had baseline conditions including dementia
or pulmonary circulation disorder were associated with an increased risk
of being diagnosed with different PASC conditions. The female patients
were associated with an increased risk of hair loss regardless of their
acute settings.

Prediction performance
Figure 4 summarizes the predictability of different PASC conditions,
quantified by the Concordance index (C-index)28 with a 95% confidence
interval using a regularized Cox model (Method section). Similar hetero-
geneous predictive patterns from other machine learning models were also

Fig. 3 | Identified risk factors associated with
incident PASC conditions from the INSIGHT
cohort, stratified by the hospitalization status
during the acute infection, March 2020 to
November 2021. a non-hospitalized and (b) hos-
pitalized during acute infection. The adjusted
hazard ratios of different factors were reported by
applying screen criteria C1-C3. The associations
whose marginal increased risks than non-infected
control patients were also significant regarding cri-
teria C4 were highlighted in purple squares. See
details of C1-4 in the Method-Association analysis
section. The color bar represents different risk levels.
Any PASC represents having at least one of the
conditions below. The color panels represent dif-
ferent organ systems, including (from top to bot-
tom): the nervous system or mental disorders, skin,
respiratory system, circulatory system, endocrine
and metabolic, digestive system, genitourinary sys-
tem, and other signs. ICD-10 codes B948 (sequelae
of other specified infectious and parasitic diseases)
and U099 (post-COVID-19 condition, unspecified)
were used to capture general PASC diagnoses.
Source data are provided in Supplementary Data 2.

Any PASC Nervous, Mental Skin Respiratory Circulatory, Blood

Endocrine Digestive Genitourinary Others

a b

Fig. 4 | Prediction performance of different inci-
dent potential PASC conditions from baseline
characteristics and the severity in the acute phase,
the INSIGHT cohort from March 2020 to
November 2021. The C-index with 95% confidence
intervals as error bars was reported. Any PASC
represents having at least one of the conditions
below. The bars in different colors were organized by
their organ systems including (from left to right): the
nervous system or mental disorders, skin, respira-
tory system, circulatory system, endocrine and
metabolic, digestive system, genitourinary system,
and other signs. The conditions with a C-index in
[0.8, 1) were highlighted with “o” texture, and those
with a C-index in [0.7, 0.8) were highlighted with “\”
texture. The numbers at the top of the bars denote
the rank of the predictability quantified by the
C-index among all the bars. The 95% confidence
interval was estimated by 1000-times bootstrapping
performance on the testing dataset in repeated
cross-validation. Source data are provided in the
Supplementary Data 2.

Any PASC Nervous, Mental Skin Respiratory Circulatory, Blood

Endocrine Digestive Genitourinary Others

Top predictive: C-index in [0.8, 1) Moderate predictive: C-index in [0.7, 0.8) Less predictive: C-index in [0.5, 0.7) 
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observed and summarized in Supplementary Fig. 4. We observed hetero-
geneous predictive performance in predicting different PASC conditions: a)
conditions with top predictive performance, defined as C-index ≥ 0.8, are
dementia,myopathies, cerebral ischemia,COPD,heart failure, hypotension,
malnutrition, acute kidney failure, and non-specific PASC diagnoses U099/
B948; b) conditions with moderate predictive performance, defined as
C-index in [0.7, 0.8), are encephalopathy, hair loss, atelectasis, pulmonary
fibrosis, pulmonary embolism, thromboembolism, anemia, fluid disorders,
diabetes mellitus; and c) other conditions such as sleep disorders, headache,
depressive disorders, anxiety disorder, parethesia, dermatitis, joint pain,
malaise and fatigue, and dizziness, etc, were less predictable with a C-index
<0.7 or less.

Sensitivity analysis
Wehave examined the impact of criteria 3 and 4 (method-association analysis
section) which require the identified association to be with a higher risk in
SARS-CoV-2 infected patients compared to non-infected patients. As shown
in Supplementary Fig. 1, we observed that more associations have been
identified if theaHRof the interaction termis smaller than1(withoutCriterion
3, highlighted in red squares) and many of these associations may not be
relevant to SARS-CoV-2 infection. Taking patientswith pre-existing cancer as
an example, they were associated with a higher risk of being diagnosed with
encephalopathy, thromboembolism, fluid disorders, edema, acute kidney
failure, malaise, and fatigue in the post-acute period after SARS-CoV-2
infection. However, these associations might be identified for non-infected
cancer patients as well. Therefore, criterion 3 is necessary for filtering out the
associations that are not specific to SARS-CoV-2 infection.On the other hand,
the identified associations including atelectasis, anemia, constipation, and
fever, can be further filtered out if we require criterion 4 (highlighted in green
squares in the Supplementary Fig. 1), namely the marginally increased risk of
thoseassociations tobe significant (pValue < 0.05, theWaldChi-Square test of
the interaction terms in the second Cox proportional hazard model when
using control patients).

We also tested to what extent the predictability of incident potential
PASC conditions is affected by different machine learning models. We
investigated a range ofmachine learningmodelswith different complexities,
including regularized logistic regression models, gradient boosting
machines, and feed-forward deep neural networks. As shown in Supple-
mentary Fig. 2, we observed similar performance of these different models,
and the heterogeneous predictability patternswere still observed as in Fig. 4.

Lastly, we studied if different feature engineering can impact the pre-
diction results of different PASC conditions. Instead of using pre-defined
baseline comorbidities, we used a more high-dimensional approach by
using the first three digits of ICD-10 codes of all the recorded diagnoses and
prescriptions inRxNormcodes at their active ingredient level in the baseline
period to predict PASC. We finally used 1593 ICD-10 diagnosis codes and
2309 drugs from the INSIGHT and 1698 ICD-10 diagnosis codes, and 4366
drugs from theOneFlorida+ data.We reported the predictive performance
of different machine learning models using this large set of features in
Supplementary Fig. 3, which does not show big differences compared to the
performance in Supplementary Fig. 2 ormain Fig. 4, and the heterogeneous
predictability patterns remain the same.

Validation by the OneFlorida+ cohort
To assess the generalizability of our findings, we replicated our analyses on
the OneFlorida+ cohort as an independent validation. The OneFlorida+
cohort included 22,341 adult patients with lab-confirmed SARS-CoV-2
infection and 177,010 non-infected as control patients (See inclusion cas-
cade in Fig. 1). We summarized the prediction performance of different
potential PASC conditions with regularized Cox model in Supplementary
Fig. 4 and the identified risk associations in Supplementary Fig. 5. From
Supplementary Fig. 4 we again observed the heterogeneous predictability of
different conditions as has been observed in Fig. 4, and themore predictable
conditions (with c-index > 0.8, such as malnutrition, COPD, dementia, and
acute kidney failure) and less predictable (with c-index around or below 0.6,

such as fatigue, anxiety, sleepdisorders, and depression) remained the same.
Similarly, the risk associations shown in Supplementary Fig. 5 are consistent
with the risk associations shown in Fig. 2. Hospitalization and ICU
admission in the acute infection phase were associated with a diverse set of
incident diagnoses in the post-acute infection phase. We still observed the
risk associations between older age and dementia (5.4-fold increased risk),
female and hair loss (2.2-fold increased risk), black race, and diabetes (1.5-
fold increased risk). Infection confirmation from July to November 2021
was associatedwith a 1.7-fold increased risk of being diagnosedwith general
PASC symptoms and signs (the U099/B948 ICD code).

Discussion
In this paper, we investigated associated risk factors for a wide range of
PASC conditions as well as the predictability of PASC using the EHR data
from two large-scale PCORnet CRN, INSIGHT, and OneFlorida+. Com-
pared with existing research on this topic which was mostly based on
patient-reported symptoms14,29, our study was based on routinely collected
EHR datasets, aimed to uncover potentially complex association maps
between baseline covariates and a set of heterogenousPASCconditions, and
checked their generalizability across two different populations.

We examined the associations between a broad list of baseline cov-
ariates and a list of likely PASC conditions. The baseline covariates include
demographics (age, gender, race, ethnicity, etc.), socioeconomic status,
healthcare utilization, BMI, time of infection, a list of comorbidities, and
severities in the acute phase of SARS-CoV-2 infection according to care
settings. What distinguishes our analytic method from existing association
analysis are two folds: we conducted fully adjusted association analyses for
all baseline covariates and each PASC condition to uncover potentially
complex association maps, and we adopted a set of stringent screening
criteria to identify likely risk factors including comparing with the non-
infected comparison group to remove background associations and using
corrected P-value to reduce the chance of false findings in the multiple test
settings. Specifically, following prior research on PASC3,6,7,30, we ascertained
newly incident conditions in the post-acute infection period (30 days to
180 days after infection) in this study.We have built a comprehensive list of
diagnoses based on a prior study by Al-Aly et al.3 with further refinements
from our clinician team6,7. Different from existing relevant studies that
treated PASC as a holistic concept3,30, we have explored the potential risk
factors of each condition, as there had been abundant evidence suggesting
PASC was a highly heterogeneous condition affecting multiple organ
systems3,6,7. Second, for a covariate to be considered as a potential risk factor
of a specific condition, we required its corresponding fully adjusted hazard
ratio (aHR) to be larger than 1, statistically significant in themultiple testing
setting, and we further required the estimated aHR value to be larger in
patients who were infected by SARS-CoV-2 compared to the non-infected
patients, in this way associations that may not be attributed to COVID-19
can be filtered out (See Supplementary Fig. 1.). Figure 2 and Supplementary
Fig. 5 summarized the identified risk associations from the INSIGHT and
OneFlorida+ cohorts respectively. Both figures show that severe acute
infection approximated by hospitalizations and admissions to the ICU
during the acute infection phase was associated with a broad set of incident
conditions in the post-acute infection phase, covering multiple organ sys-
tems. Older age (≥75 years) was also found to be a potential risk factor for
many of these conditions. These discoveries were consistent with the con-
clusions from prior studies31,32. Other notable risk associations consistently
identified from both cohorts include higher baseline comorbidity burden
and fluid disorder, baseline obesity and sleep disorder, as well as baseline
end-stage renal disease and malnutrition. Some associations should be
interpreted more cautiously. For example, baseline pulmonary circulation
disorder was consistently identified as a risk pulmonary embolism, but the
two conditions are highly correlated with each other, and this association
could just be due to the ICD coding and grouping. Another example was
baseline pregnancy and anemia, as anemia is the most common hemato-
logic problem in pregnancy33. However, there were also studies suggesting
that SARS-CoV-2 infection during pregnancy can further exacerbate iron
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deficiency anemia due to hyperinflammation during the acute infection
phase34. These findings were in line with our approach which can identify
associations with potentially exacerbated risks than the non-infected
control group.

We then investigated the predictability of different potential PASC
diagnoses using different types of machine learning (ML)models including
linear models (regularized logistic regression, regularized Cox regression),
gradient-boosting-tree-basedmodels, and deep learningmodels, based on a
similar set of baseline covariates (patient demographics, prior conditions,
and care settings in the acute phase, etc.). The results from regularized Cox
regression were summarized in Fig. 4, which suggested that different con-
ditions were associated with different predictabilities in the INSIGHT
cohort. Conditions such as dementia, heart failure, and kidney failure were
more predictable. These conditions are with clear diagnostic criteria
according to the underlying disease etiologies and are more likely to be
severe COVID complications. General PASC symptoms and signs with the
U099/B948 codes were also associated with good prediction performance,
which is consistent with prior studies35. One potential reason was that these
codes were relatively new, and the cliniciansmight be cautiously using them
only when the symptoms and signs were typical. Conditions such as
headache, dizziness, chest pain, joint pain, anxiety, anddepressive disorders,
were more difficult to predict. These conditions are most subjective to
diagnose, more similar to patient-reported symptoms, and cannot be
explained by alternative disease etiologies. The prediction performance
obtained frommore complex machine learning models or different feature
engineering methods did not make such differences, as evidenced by Sup-
plementary Figs. 2 and 3, respectively. In addition, we have replicated the
predictive modeling analysis on the OneFlorida+ cohort, and the results
summarized in Supplementary Fig. 4 were highly consistent with the con-
clusions obtained from the INSIGHT cohort. Our ML-based predictive
models together with observed predictability shed light on how to use EHR
data to data-drivenly identify patients who were at risk of heterogeneous
PASC conditions.

There were several strengths of our study. First, we studied a com-
prehensive set of associations between 89 factors and 43 incident PASC
conditions in two large EHR cohorts. To our knowledge, this is one of the
largest studies on predictive modeling and risk factor analysis for PASC
using EHR. Particularly, to reduce false findings, we adopted a non-infected
control group and required the adjusted hazard ratio value of the identified
association estimated from the infected patients to be larger than the value
estimated from the control patients.We also identified likely associations by
using significance levels corrected by multiple test settings. On the other
hand, extensive sensitivity analyses and validation analyses were conducted
to get robust conclusions. We derived our primary results from INSIGHT
and did a validation study on OneFlorida+, which validated the general-
izability of our findings. We also checked identified associations when
stratifying patients by their acute severity. Regarding the prediction per-
formance, we investigated a range of different machine learning models on
both a narrow and broad list of covariates, which further validates the
robustness of our conclusions.

Our studyhad several limitations.Our analysiswasbasedonEHRdata,
which would miss the information from patients who did not visit the
hospitalswithin theCRNs.Weonly considerednewly incident conditions in
the post-acute period but did not explore conditions that were prolonged,
worsened, or relapsed before and after COVID-19 infection, as well as
condition clusters or subphenotypes. The identification of the incident
events can be associated with healthcare utilization behaviors: patients who
had limited healthcare engagement before COVID-19 infection subse-
quently might have a greater opportunity to be diagnosed with new con-
ditions simply because of less captured baseline status. Thus, in our analysis,
we compared identified associations with those in non-infected patients
with similar baseline characteristics including healthcare utilization beha-
vior. In addition, we will also explore clinical notes to better capture inci-
dence events in our future analysis. We acknowledge the limitation in not

using COVID-19 vaccination status because the publicly available COVID-
19 vaccine began in early December 2020 and nearly half of the study
population got infected before any vaccine was available. Regarding the
remaining half of the population who got infected after December 2020, the
vaccine records collected outside the hospitals were largely missing. In
addition, vaccinated patients can still develop severe infection36, which was
identified as a risk factor for Long COVID by our analysis and others37. In
addition, the effect of COVID-19 vaccine on Long COVID is not consistent
and still needs further investigation38–40. Studying how COVID-19 vaccine
influences the PASC is a promising future direction as in the later cohort
vaccination is more prevalent, and building the linkage to more robust
vaccination data (e.g., registry database) of general patients is one of our
ongoing efforts. The smoking statuswas not investigated due tomissingness
(90.2%). In addition, our analyses did not cover the recent Omicron wave
due to the availability of the data.We captured the acute severity of illness by
hospitalization and ICU status during their acute infectionphase, consistent
with the existingLongCOVID literature.However, thesemodelings of acute
severity can lack granularity in the medical use variable that may overlook
differences in the true severity of illness. For example, a patient who spent a
month in the ICU on a ventilator should not be considered as having the
same severityof illness as apatientwho spent anight in the ICUafter elective
surgery. We would like to add more granularity to acute severity modeling
by capturing the duration of ICU/hospital stay or using the WHO ordinal
clinical severity scale41 in our future analysis as more patients accumulate.
Lastly, though we tried to remove background associations, several identi-
fied associations should be interpreted with caution. For example, older
individuals are more likely to develop dementia, and those with a BMI <
18.5 are more likely to be diagnosed with malnutrition likely represents
underlying patient characteristics and known disease state processes. To
quantify the potential exacerbation effect (if any) of SARS-CoV-2 infection
on some known risk associations remains an open question. Further studies
are also warranted to investigate the basic mechanisms of developing
Long COVID.

In conclusion, we used two large-scale CRN, INSIGHT and One-
Florida+ to identify likely risk factors associated with incident PASC con-
ditions. We observed complex association patterns and a varying
predictability of several PASC conditions which may represent challenges
formanagingheterogeneousPASCconditions.Amongcomplex association
patterns observed, we further highlighted severe acute infections, being
underweight, and having baseline conditions including cancer or cirrhosis
that are potentially associated with overall incident PASC in the post-acute
phase. However, multiple less predictable PASC diagnoses represent an
ongoing challenge thatmay not respond to othermeasures that decrease the
severity of acute COVID-19. Our developed machine learning-based pre-
dictive models can help identify those who are at risk of diverse PASC
conditions with heterogeneous predictability.

Data availability
The INSIGHT data can be requested through https://insightcrn.org/. The
OneFlorida+ data can be requested through https://onefloridaconsortium.
org. Both the INSIGHT and the OneFlorida+ data are HIPAA-limited.
Therefore, data use agreementsmust be established with the INSIGHT and
OneFlorida+ networks. The relevant source data for each figure are pro-
vided in the Supplementary Data 2-Source Data file.

Code availability
For reproducibility, our codes are available at https://github.com/calvin-
zcx/pasc_phenotype/tree/master/prediction42. We used Python 3.9, python
package lifelines-0.2666 for survival analysis, and scikit-learn package 1.0.2
and LightGBM package 3.3.2 for machine learning modeling.
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