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Abstract 

Coronaviruses employ various strategies for survival, among which the activation of endogenous or exogenous 
apoptosis stands out, with viral proteins playing a pivotal role. Notably, highly pathogenic coronaviruses such as SARS‑
CoV‑2, SARS‑CoV, and MERS‑CoV exhibit a greater array of non‑structural proteins compared to low‑pathogenic 
strains, facilitating their ability to induce apoptosis via multiple pathways. Moreover, these viral proteins are adept 
at dampening host immune responses, thereby bolstering viral replication and persistence. This review delves 
into the intricate interplay between highly pathogenic coronaviruses and apoptosis, systematically elucidating 
the molecular mechanisms underpinning apoptosis induction by viral proteins. Furthermore, it explores the potential 
therapeutic avenues stemming from apoptosis inhibition as antiviral agents and the utilization of apoptosis‑inducing 
viral proteins as therapeutic modalities. These insights not only shed light on viral pathogenesis but also offer novel 
perspectives for cancer therapy.

Highlights 

• Apoptosis plays an important role in the pathogenesis of the highly pathogenic coronavirus

• The structural and non‑structural proteins of highly pathogenic coronaviruses exert significant influence over apop‑
tosis regulation

• Apoptosis inhibitors exhibits promising antiviral effects, thereby presenting a potential avenue for the development 
of novel therapeutics targeting COVID‑19.

Keywords Apoptosis, Highly Pathogenic Coronavirus, Antiviral Drugs

Background
Coronaviruses are a large family of viruses that cause ill-
ness in both animals and humans. They are divided into 
four genera: α, β, γ and δ. Among these, humans are 
primarily susceptible to coronaviruses from the α and β 
genera. The β genera, in particular, include three highly 
pathogenic species: severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), responsible for the Corona 
Virus Disease 2019 (COVID-19) pandemic, as well as 
severe acute respiratory syndrome coronavirus (SARS-
CoV) and middle east respiratory syndrome coronavirus 
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(MERS-CoV) (Fig. 1). On the other hand, there are four 
low-pathogenic species commonly associated with mild 
respiratory symptoms, namely human coronavirus 
(HCoV) 229E, NL63, OC43, and HKU1 (Fig.  1), which 
are classified under the α and β genera. Bat SARS-like 
coronaviruses belong to β genera also show potential 
for human emergence [1, 2] (Fig. 1). Infection with these 
low-pathogenic coronaviruses typically results in symp-
toms resembling the common cold [3].

COVID-19, caused by SARS-CoV-2, emerged in late 
2019 and has become a global pandemic. By the end of 
2023, there have been over 770 million reported cases 
and over 6.9 million deaths worldwide [4]. Previous 
large-scale coronavirus outbreaks include SARS in 2002 
(caused by SARS-CoV) and MERS in 2012 (caused by 
MERS-CoV). The cumulative number of infections for 
SARS and MERS was a approximately 8,000 [5] and 2,600 
[6], respectively, with cumulative death toll of 774 [5] and 
936 [6].

The virus particles of SARS-CoV, MERS-CoV, and 
SARS-CoV-2 include genomic RNA and four struc-
tural proteins, spike (S), envelope (E), membrane (M) 
and nucleocapsid (N). Non-structural proteins are not 
necessarily incorporated into the virus particles, except 
ORF3a, ORF7a, ORF7b, ORF9b of SARS-CoV [7, 8] and 
ORF3a, ORF7a of SARS-CoV-2 [9] (Fig. 2A). SARS-CoV, 
MERS-CoV, and SARS-CoV-2 are positive-sense, single-
stranded RNA viruses with genomes of about 30,000 

bases in length. Their genomes include 5’ end cap-like 
structure, structural proteins S, E, M and N, non-struc-
tural proteins, and 3’-end poly A tails [10–15]  (Fig. 2B). 
Comparing different human-susceptible coronavirus 
genomes, it’s evident that highly pathogenic coronavi-
ruses encode more non-structural proteins than low-
pathogenic coronaviruses (Fig.  2B). Many studies have 
demonstrated that different non-structural proteins can 
help highly pathogenic coronaviruses evade host immune 
responses more effectively and promote viral replica-
tion in different ways. Regulation of apoptosis is one of 
the important way [16–25]. In this review, we summarize 
the current knowledge of the apoptosis induced by highly 
pathogenic coronaviruses and their molecular mecha-
nisms, as well as the potential applications of apoptosis 
inhibitors as antiviral drugs.

Apoptosis signal transduction
Apoptosis, a programmed cell death process, was origi-
nally proposed by J.F. Kerr in 1972 [26]. The classical 
apoptosis is primarily categorized into three pathways 
based on the origin of the apoptotic signal: the endog-
enous endoplasmic reticulum (ER) stress pathway, the 
endogenous DNA damage pathway and the exogenous 
death receptor pathway.

Endogenous apoptosis mainly includes ER stress 
pathway and DNA damage pathway. When DNA dam-
age (such as DNA double-strand break) occurs, DNA 

Fig. 1 Phylogenetic tree of highly pathogenic coronavirus (red), low‑pathogenic coronavirus (blue) and the other SARS‑related coronavirus. 
Reference sequences of representative coronaviruses include phylogenetic analysis was performed with the CLC program by the neighbor‑joining 
method on the basis of the Kimura two‑parameter model
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damage response (DDR) kinases ataxia-telangiecta-
sia mutated (ATM), ATM- and Rad3-Related (ATR), 
DNA-dependent protein kinase (DNA-PK) are acti-
vated [27], and then a large amount of H2AX is rapidly 
phosphorylated at Ser-139 to produce phosphorylated 
histone H2AX (γH2AX) and bind to the damage sites 
[28], further activating p53 to phosphorylation, and 

promoting apoptosis by regulating the transcription of 
apoptosis-related genes (Fig.  3A). When unfolded pro-
tein response (UPR) and other factors induce ER stress, 
the protein kinase RNA–like endoplasmic reticulum 
kinase (PERK), inositol requiring enzyme 1α (IRE1α), 
and activating transcription factor 6 (ATF6) pathways 
are activated, resulting in enhanced C/EBP homologous 

Fig. 2 General structural pattern diagram and genome of coronavirus. A, Coronavirus particles include E, M, N, S, genomic RNA and secondary 
components such as ORF3a, ORF7a, ORF7b, ORF9b of SARS‑CoV and ORF3a, ORF7a of SARS‑CoV‑2. B, Schematic diagram of the genomic 
organization and encoded proteins of SARS‑related coronavirus. The highly pathogenic coronaviruses (red) encode more non‑structural proteins
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protein (CHOP) expression and endogenous apoptosis 
(Fig.  3B). In response to signals such as DNA damage 
and ER stress, pro-apoptotic BH3-only proteins (BAD, 
BID, BIM, PUMA, NOXA, etc.) competitively bind to 
anti-apoptotic proteins (BCL-2, BCL-xL, MCL-1), releas-
ing pro-apoptotic proteins (BAX, BAK, BOK) from anti-
apoptotic proteins [29]. Free pro-apoptotic proteins form 
oligomers, leading to their activation and translocation 
to the outer mitochondrial membrane, forming chan-
nels. These channels cause mitochondrial outer mem-
brane permeabilization (MOMP), resulting in the release 
of cytochrome C from the intermembrane space of 

mitochondria into the cytoplasm. Cytochrome C works 
with procaspase-9 and apoptotic protease activating fac-
tor 1 (APAF1) to form apoptosomes, which activates cas-
pase-9. Then, activated caspase-9 cleaves procaspase-3, 
generating caspase-3. Caspase-3 further cleaves the DNA 
repair enzyme poly ADP-ribose polymerase (PARP), 
leading to DNA repair dysregulation and eventually trig-
gering endogenous apoptosis [30–34] (Fig. 3).

The exogenous pathway relies on the activation of 
death receptors on the cell surface. When extracellu-
lar death ligands (such as FasL, TNF and TRAIL) bind 
to death receptors (Fas, TNFR1, TRAILR1, TRAILR2), 

Fig. 3 Overview of apoptosis activation by proteins encoded by highly pathogenic coronaviruses. A, Exogenous death receptor apoptotic 
pathway and intrinsic DNA damage‑induced apoptosis pathway. B, Intrinsic ER stress‑induced apoptosis pathway. The majority of proteins 
encoded by highly pathogenic coronaviruses enhance the activity of pro‑apoptotic proteins (indicated by red arrows) and suppress the function 
of anti‑apoptotic proteins (indicated by blue arrows). Certain structural proteins (depicted in blue) exhibit the capability to inhibit apoptosis
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a death-inducing signaling complex (DISC) containing 
the intracellular death domain of the death receptor, Fas-
associating death domain protein (FADD)/ TNFR1-asso-
ciated death domain protein (TRADD) and caspase-8 
was formed. Caspase-8 is activated through oligomeri-
zation and subsequently, cleaves procaspase-3 to gener-
ate caspase-3, eventually exogenous apoptosis. Activated 
caspase-8, on the other hand, cleaves BH3-interacting 
domain death agonist (BID) into truncated BID (tBID), 
promotes the translocation of tBID from the cytosol to 
the mitochondria, which contribute to MOMP, ultimately 
leading to apoptosis [30–32, 34] (Fig. 3A).

In conclusion, apoptosis is regulated by complex sig-
nal transduction pathways involving both endogenous 
and exogenous pathways. Understanding the mecha-
nisms and interactions involved in apoptosis signal 
transduction is crucial for unraveling the intricate pro-
cesses underlying cell death and survival and developing 
novel therapeutic strategies targeting apoptosis-related 
diseases.

Apoptosis and highly pathogenic coronaviruses: exploring 
the role of apoptosis in coronavirus pathogenesis
Traditionally, apoptosis has been regarded as a means for 
host cells to rescue themselves and facilitate viral clear-
ance [35, 36]. However, compelling evidence is emerg-
ing to suggest that apoptosis can act as a double-edged 
sword, capable of benefiting both DNA and RNA viruses 
in promoting their self-replication [37, 38].

Remarkably, it has been observed that caspase-defi-
cient cells exhibit a heightened antiviral ability compared 
to normal cells [39]. Mitochondrial stress is one of the 
ways that SARS-CoV-2 activates the cyclic GMP-AMP 
synthase-stimulator of interferon gene (cGAS-STING) 
signaling pathway, which causes mitochondrial dysfunc-
tion and releases mitochondrial DNA (mtDNA) from the 
mitochondria into the cytoplasm [40], resulting in upreg-
ulating of type I interferon (IFN-I) expression. In order 
to antagonize the antiviral effect of interferon, the virus 
employs a strategy by enhancing the apoptosis signal, 
activating caspase-3 and caspase-7, both of which play 
crucial roles downstream in the apoptotic pathway [41]. 
These activated caspases not only cleave and inactivate 
IFN-I [42], but also promote mtDNA degradation, and 
inhibit the activation of cGAS-STING signaling pathway 
[41, 43]. Consequently, the virus evades the surveillance 
and clearance by the host immune system, establishing a 
favorable environment for its survival.

In the long-term struggle between viruses and hosts, 
some viruses have developed strategies to manipulate 
cellular processes. For highly pathogenic coronaviruses 
such as MERS-CoV, SARS-CoV, and SARS-CoV-2 men-
tioned above, inducing apoptosis is an important way 

to promote viral replication, aggravate tissue and organ 
damage, and motivate the development of diseases [37, 
38].

Studies have demonstrated that apoptosis is associ-
ated with lung injury, multi-organ failure in COVID-19 
patients [44–46]. Notably, SARS-CoV-2 predominantly 
induces apoptosis in respiratory epithelial cells rather 
than necrosis. This preference is evidenced by the abun-
dance of apoptotic cells and scarcity of necrotic cells 
following invasion of human respiratory epithelial cells 
[47]. This characteristic may reflect the virus’s “clever-
ness” in adopting immune “silencing” apoptosis as a 
survival strategy given that apoptosis is more suitable 
for the virus’s survival than necrosis, which can trigger 
excessive production of inflammatory factors. Following 
SARS-CoV-2 infection, the virus persists longer in the 
nasal mucosa compared to the lungs, with lower produc-
tion of inflammatory factors [48]. This is due to nasal 
mucosal epithelial cells primarily undergoing apoptosis 
after viral infection, whereas in the lungs, the apoptosis 
rate is lower and the pyroptosis rate is higher [48], while 
apoptosis of immune silence is more conducive to viral 
replication. Notably, the virus is predominantly present 
in superficial epithelial cells in the early stages of infec-
tion, and gradually invades submucosal cells as the dis-
ease progresses [48]. Therefore, apoptosis may favor the 
spread of the virus from nasal mucosal epithelial cells 
to submucosal cells, that is, apoptosis can promote the 
spread of SARS-CoV-2.

Moreover, evidence suggests that SARS-CoV-2 trig-
gers apoptosis in lung epithelial cells, destroys the 
alveolar capillary barrier, thereby promoting the devel-
opment of pulmonary edema and acute respiratory dis-
tress syndrome (ARDS), and aggravating lung injury in 
patients with COVID-19, resulting in high mortality [35, 
49–52]. Patients with severe COVID-19 were more likely 
to develop apoptosis than those with mild symptoms, 
highlighting the direct relationship between apoptosis 
levels and severity and mortality of COVID-19 patients 
[53]. During SARS-CoV-2 infection, the apoptosis ratio 
of B lymphocytes, T lymphocytes [54, 55]  and mono-
cytes [53]  is also elevated. This coupled with impaired 
phagocytosis and anti-inflammatory function of mac-
rophages and monocytes after phagocytosing apoptosis 
cells [56], particularly in severe clinical cases, suggests 
that enhanced apoptosis of immune cells may contribute 
to the severe clinical symptoms of COVID-19 patients. 
Additionally, SARS-CoV-2-induced apoptosis in β pan-
creatic cells contributes to abnormal glucose metabolism, 
which aggravates diabetes [57]. In summary, apoptosis 
aggravates multiple organ failure and microcirculation 
disorders through various mechanisms, leading to higher 
patient mortality rates and poor clinical outcomes.
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MERS-CoV activates both endogenous and exogenous 
apoptotic pathways, leading to extensive apoptosis of 
bronchial epithelial cells, renal cells, macrophages, den-
dritic cells and other cells, resulting in high morbidity and 
mortality among MERS patients [58–60]. Due to elevated 
dipeptidyl peptidase-4 (DPP4) receptor expression on T 
lymphocytes, they become more vulnerable to MERS-
CoV infection, triggering apoptosis. MERS-CoV targets 
lymphoid organs like the spleen and tonsils, infecting T 
lymphocytes at various developmental stages, leading to 
extensive apoptosis and subsequent lymphocyte deple-
tion. This immune system paralysis exacerbates viral 
infection, culminating in a severe prognosis for patients 
[59]. Yeung ML et al. discovered that MERS-CoV induces 
apoptosis in kidney cells by upregulating the expression 
of smad family member 7 (Smad7) and fibroblast growth 
factor 2 (FGF2), thus facilitating viral release and dissem-
ination of infection in kidneys and other tissues. Conse-
quently, the incidence of renal failure in MERS patients 
surpasses that of other human coronavirus infections 
[58]. Notably, MERS-CoV uses caspase-6, a component 
of the apoptosis cascade, to cleave the N protein, pro-
ducing small fragments that act as interferon antagonists 
and suppress the host immune response, thus promoting 
replication [38]. The inhibition of caspase-6 can attenuate 
MERS-CoV replication in human lung tissue and human 
intestinal organoids, and also improve the pathological 
changes of the lung in vivo caused by the virus [38].

Furthermore, SARS-CoV infection triggers significant 
apoptosis in lung epithelial cells [61, 62], lymphocytes 
[63, 64], liver [65], thyroid [66]  and kidney [67]  cells. 
Microarray analysis of host genes showed that the 
expression of 13 pro-apoptotic genes was up-regulated 
after SARS-CoV infection, while only 3 pro-apoptotic 
genes were up-regulated after infection with the low-
pathogenic coronavirus HCoV-229E. Thus, highly patho-
genic coronaviruses enhance pathogenicity by inducing 
apoptosis. It is with regret that cross-sectional compari-
sons of the apoptosis-inducing capacity of highly patho-
genic coronaviruses are still lacking in the field. Further 
study of this may help us understand the important role 
of apoptosis in the pathogenesis of highly pathogenic 
coronaviruses.

The induction of apoptosis to promote viral replica-
tion is not exclusive to coronaviruses but is a common 
survival strategy employed by many viruses, including 
cowpox viruses (CPXV) [68], porcine epidemic diarrhea 
virus (PEDV) [69, 70], herpes simplex virus (HSV) [71, 
72], Epstein-Barr virus (EBV) [73], human immunodefi-
ciency virus (HIV) [74–83], Zika virus (ZIKV) [84], Hep-
atitis C virus (HCV) [85–92], and others. Therefore, the 
virus exploits apoptosis to enhance its replication, lead-
ing to a substantial increase in the number of infected 

cells undergoing apoptosis, aggravating the patient’s con-
dition. Apoptosis serves as a crucial tactic for viruses to 
suppress host immune responses and facilitate infection. 
Understanding the intricate interplay between apopto-
sis and viral infectious diseases is vital for deciphering 
the complexities underlying viral pathogenesis. Further 
exploration of these mechanisms holds promise for the 
development of innovative strategies to combat apopto-
sis-related viral diseases.

Mechanism and biological significance of apoptosis 
modulated by highly pathogenic coronavirus structural 
proteins
Highly pathogenic coronavirus structural proteins, 
including S, E, M and N proteins, play critical roles in cell 
invasion, virus particle synthesis, release, and also modu-
lation of cell apoptosis [68–70, 93] (Table 1).

Specifically, the SARS-CoV-2 S protein induces apop-
tosis through various pathways. Firstly, SARS-CoV-2 S 
promotes apoptosis through autophagy by reactive oxy-
gen species (ROS)-suppressed PI3K/AKT/mTOR signal-
ing [71]. Moreover, S protein directly interacts with the 
major receptor angiotensin-converting enzyme 2 (ACE2), 
facilitating the formation of ACE2-calcium channel clus-
ters. This interaction causes overactivation of calcium 
channels, disrupting intracellular calcium homeostasis, 
and ultimately inducing apoptosis [72]  (Fig. 3). Further-
more, SARS-CoV S protein triggers ER stress and UPR 
through PERK pathway activation, resulting in disrupted 
cellular homeostasis, apoptosis, and enhanced viral 
replication [73–75]  (Fig.  3B). Additionally, the induc-
tion of apoptosis by MERS-CoV S protein has also been 
reported, although the specific regulatory mechanism 
remains unclear [76] (Fig. 3A).

SARS-CoV-2 E protein has been shown to induce 
apoptosis in periodontal ligament fibroblasts [77], 
although the mechanism of action remains to be eluci-
dated (Fig.  3A). Studies have reported that SARS-CoV 
E proteins can trigger ER stress [63, 78]  and promote 
mitochondria-mediated apoptosis by sequestering the 
anti-apoptotic protein B-cell lymphoma-extra large 
(BCL-xL) onto the ER membrane [63] (Fig. 3A). Remark-
ably, SARS-CoV E protein has been reported to hinder 
the process of apoptosis. For example, they can down-
regulate the IRE1α signaling pathway associated with 
unfolded proteins, without affecting the PERK and ATF6 
signaling pathways (Fig. 3B). Ultimately, this reduction in 
apoptosis occurs [79]. The fact that the same viral pro-
tein has opposite effects on apoptosis may indicate that 
the viral protein performs different functions at different 
stages of the viral life cycle.

SARS-CoV-2 M protein induces apoptosis in lung epi-
thelial cells through mitochondria, and can inhibit BOK 
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ubiquitination and stabilize its levels by interacting with 
the BH2 domain of BOK’s endodomain in the absence of 
BAX and BAK, ultimately promoting BOK mitochondrial 
localization [52]  (Fig.  3A). BOK can directly mediate 
the increase of mitochondrial membrane permeability 
and ultimately activate mitochondrial pathway-induced 
apoptosis [80]. In addition, SARS-CoV-2  M protein 
can also inhibit the activation of PDK1-Akt signaling 
and induce caspase-dependent apoptosis by interact-
ing with 3-phosphoinositide-dependent protein kinase 
1 (PDK1), while the SARS-CoV-2 N protein can spe-
cifically enhance the interaction between M protein and 
PDK1, thereby enhancing apoptosis induced by M pro-
tein [81–83]  (Fig.  3A). The synergistic effect of M pro-
teins and N proteins to enhance their respective levels 
of induced apoptosis has also been found in SARS-CoV 
[82, 84] (Fig. 3A). Meanwhile, the MERS-CoV M protein 
can interact with the ER marker glucose regulated pro-
tein 78kD (GRP78), disrupt the binding of GRP78 and 
PERK, specifically activate the PERK pathway, further 
activate the expression of downstream pro-apoptotic 
genes (Fig.  3B), enhance self-replication, aggravate host 
lung injury, and increase the susceptibility to apoptosis 
inducer, Etoposide. In addition, PERK inhibitor signifi-
cantly inhibits MERS-CoV replication [37].

SARS-CoV N protein activates apoptosis signaling 
by up-regulating Jun-N-terminal kinase (JNK) and p38 

mitogen-activated protein kinase (p38 MAPK) path-
ways, while down-regulating Akt phosphorylation and 
BCL-2 levels [85] (Fig. 3). Conversely, the N protein also 
demonstrates anti-apoptotic capabilities. SARS-CoV N 
protein specifically binds to Smad3 through the MH2 
domain, interfering with the formation of the Smad3-
Smad4 complex. This results in increased transcription 
of transforming growth factor-β (TGF-β), promoting 
plasminogen activator inhibitor-1 (PAI-1) expression 
and aggravating tissue fibrosis post-infection. However, 
it weakens the Smad3-Smad4 complex-mediated apop-
tosis [86]  (Fig.  3A). Among the proteins encoded by 
SARS-CoV-2, the N protein has the function of inhibiting 
apoptosis by regulating apoptosis-related genes (BAX, 
BAK, BCL-2) [87]. The PAN P’s team [88] discovered that 
the SARS-CoV-2 N protein specifically interacts with the 
anti-apoptotic protein myeloid cell leukemia-1 (MCL-1), 
recruiting the deubiquitinating enzyme ubiquitin-spe-
cific peptidase 15 (USP15) to remove K63 ubiquitination 
of MCL-1 and stabilize MCL-1 to inhibit BAK’s func-
tion in mitochondria, and ultimately inhibiting apoptosis 
(Fig.  3A). N protein promotes viral replication, such as 
influenza A virus (IAV), dengue virus (DENV), and ZIKV, 
exacerbating mortality in infected mice. All of these can 
be blocked by MCL-1-specific inhibitors [88]. SARS-
CoV-2 replicates effectively in asymptomatic patients 
without causing respiratory dysfunction. However, it 

Table 1 Summary of apoptosis modulated by structural proteins of highly pathogenic coronaviruses

Coronavirus Structural 
protein

Effect on apoptosis Molecular mechanism Biological significance Reference

SARS‑CoV‑2 S Promote 1.Inhibit PI3K/Akt/mTOR pathway
2.Disrupt intracellular calcium homeostasis

 [71, 72]

E Promote  [77]

M Promote 1.Inhibit BOK ubiquitination
2.Inhibit PDK1‑PKB/Akt pathway

Damage to the alveolar capillary barrier  [52, 80–83]

N Suppress Stabilize MCL‑1 Promote viral replication without caus‑
ing respiratory dysfunction and increases 
the risk of superinfection

 [87, 88]

SARS‑CoV S Promote Activate the PERK pathway Promote viral replication  [73–75]

E Promote 1.Trigger ER stress
2.Prevent BCL‑xL translocation to mito‑
chondria

 [63, 78]

Suppress Inhibit IRE1α pathway  [79]

M Promote Inhibit PDK1‑PKB/Akt pathway  [82, 84]

N Promote Up‑regulated JNK and p38 MAPK pathway, 
and down‑regulated Akt phosphorylation 
and BCL‑2 protein level

 [24, 85]

Suppress Interfere with Smad3‑Smad4 complex 
formation

Increase apoptosis and exacerbate tissue 
fibrosis

 [86]

MERS‑CoV S Promote  [76]

M Promote Disrupt the binding of GRP78 and PERK, 
thereby specifically activating the PERK 
pathway

Promote apoptosis, enhance viral replica‑
tion, and aggravate lung injury

 [37]
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increases the risk of superinfection, possibly attributed to 
inhibition of apoptosis by N proteins [88].

The same viral protein can result in different effects on 
apoptosis, which may be related to the different effects 
of apoptosis on different stages of the viral life cycle. 
Understanding these mechanisms and the significance of 
coronavirus structural proteins-induced apoptosis is cru-
cial in developing therapeutics and interventions against 
highly pathogenic coronaviruses.

Mechanism and biological significance of apoptosis 
induced by highly pathogenic coronaviruses 
non‑structural proteins
The proteins (NSP1-NSP16) encoded by the ORF1ab of 
highly pathogenic coronavirus are mainly involved in 
the transcriptional replication [89], with limited reports 
on their apoptosis-inducing abilities. However, certain 
non-structural proteins, such as ORF3a [16], ORF6 [19, 
21–24, 90], ORF7a [20, 91], ORF7b [21, 91], and ORF8 

[25, 92, 94] possess functions of antagonizing innate 
immune signaling and assisting viral invasion of host 
immune responses. Moreover, these non-structural 
proteins also play a crucial role in inducing apoptosis 
(Table 2).

SARS-CoV ORF3a and SARS-CoV-2 ORF3a use 
different strategies to induce apoptosis [36]. SARS-
CoV-2 ORF3a, localized in the ER, initiates RETREG1/
FAM134B-associated ER autophagy (Reticulophagy) 
[116], activating IRE1α-mediated spliced X-box-protein 1 
(sXBP1) production, thereby inducing apoptosis via the 
endogenous ER stress pathway [117] (Fig.  3B). In addi-
tion, SARS-CoV-2 ORF3a upregulates death receptor 
ligands and activates apoptosis induced by exogenous 
death receptor pathway [36] (Fig.  3A). On the other 
hand, SARS-CoV ORF3a activates the p38 MAPK path-
way or activates the PERK pathway to regulate apoptosis 
induced by ER stress pathway [62, 95, 107, 108], affect-
ing the packaging and release of the virus [109, 110], and 

Table 2 Summary of apoptosis induced by non‑structural proteins of highly pathogenic coronaviruses

Coronavirus Non‑
structural 
protein

Effect on apoptosis Molecular mechanism Biological significance Reference

SARS‑CoV‑2 ORF3a Promote 1.Upregulate death receptors 
and ligands
2.Activation of ER stress via reticulo‑
phagy

 [36, 95, 96]

ORF7a Promote 1.C‑terminus interacts with BCL‑xL 
and recruits BCL‑xL to ER to activate 
ER stress
2.Up‑regulate CHOP and activate ER 
stress

 [97]

ORF7b Promote Up‑regulate c‑MYC and thus promote 
TNFα expression

Mediate apoptosis to cause lung 
damage

 [98, 99]

ORF9b Promote Binding to Tom70, apoptosis is medi‑
ated by Tom70/Hsp90/IRF3/Bax 
complex

Inhibit IFN‑I signaling through Tom70  [100–105]

ORF9c Promote Affect ATP metabolism and induce 
transcription levels of pro‑apoptotic 
genes

Cause cardiomyocyte apoptosis, lead‑
ing to COVID‑19 related heart damage

 [106]

SARS‑CoV ORF3a Promote Activation of MAPK or PERK pathways 
regulates ER stress

Facilitate the packaging and release 
of viruses

 [62, 95, 107–110]

ORF3b Promote Induce G0/G1 arrest and apoptosis  [111, 112]

ORF6 Promote Mediate JNK‑dependent ER stress  [113]

ORF7a Promote 1.Pro‑apoptotic mechanism is similar 
to SARS‑CoV‑2 ORF7a
2.Activate the MAPK pathway, inhibit 
cell translation and induce apoptosis

 [114, 115]

ORF8a Promote Affect mitochondrial potential Promote viral infection  [116–118]

ORF9b Promote 1.Binding to Tom70, apoptosis 
is mediated by Tom70/Hsp90/IRF3/Bax 
complex
2.ORF9b retained in the nucleus 
regulates apoptosis‑related transcrip‑
tion factors

Inhibit IFN‑I signaling through Tom70  [100–105, 119]

MERS‑CoV ORF3 Promote Activate death receptors  [120]



Page 9 of 16Cheng et al. Journal of Biomedical Science           (2024) 31:70  

PERK kinase inhibitors can significantly reduce apoptosis 
and inflammation in lung epithelial cells [62] (Fig. 3B).

ORF3 of MERS-CoV has similar ability to induce apop-
tosis as SARS-CoV ORF3a and SARS-CoV-2 ORF3a, 
mediating apoptosis through the exogenous death recep-
tor pathway in a dose-dependent manner (Fig.  3A). 
However, ORF3 is less stable than SARS-CoV ORF3a 
and SARS-CoV-2 ORF3a as it is easily ubiquitinated 
and degraded by the host E3 ligase HUWE1, leading to 
reduced apoptosis induction potential and possibly con-
tributing to its lower transmissibility [120].

SARS-CoV ORF3b can induce G0/G1 arrest and 
apoptosis [111, 112] (Fig.  3A), while the function of 
SARS-CoV-2 ORF3d, which was previously mistaken 
for SARS-CoV-2 ORF3b, remains unknown. SARS-CoV 
ORF6 is known to mediate ER stress and JNK-depend-
ent apoptosis [113] (Fig.  3B). However, further research 
is needed to determine whether SARS-CoV-2 ORF6 can 
induce apoptosis. It should be noted that MERS-CoV 
ORF6 acts as the E protein and will not be discussed fur-
ther in this context.

SARS-CoV-2 ORF7a interacts with the anti-apoptotic 
protein BCL-xL through the C-terminal amino acid 
residues Lys117 and Lys 119, recruiting BCL-xL to the 
ER to activate ER stress and induce apoptosis (Fig. 3A). 
Concurrently, ORF7a induces ER stress through the 
PERK-elF2α-CHOP pathway, suppressing the expres-
sion of endogenous BCL-xL and thereby augmenting 
apoptosis (Fig. 3B). The ubiquitination of ORF7a Lys119 
can diminish its interaction with BCL-xL, impeding the 
aggregation of BCL-xL in the ER, and consequently pre-
venting ER stress and inhibiting apoptosis [97]. Remark-
ably, SARS-CoV ORF7a exhibits a similar pro-apoptotic 
mechanism to SARS-CoV-2 ORF7a [114]. Moreover, 
SARS-CoV ORF7a can also activate the p38 MAPK path-
way, inhibit the host cell translation process and induce 
apoptosis [115] (Fig. 3B).

It has been reported that SARS-CoV-2 ORF7b upregu-
lates MYC proto-oncogene (c-MYC) and induces c-MYC 
signaling to promote death receptor-mediated apoptosis 
and aggravate tissue and organ damage [98, 99] (Fig. 3A). 
Remarkably, SARS-CoV ORF7b localizes to the Golgi 
[121] and serves not only as a non-structural protein, 
but also participates in the assembly of SARS-CoV viral 
particles with ORF3a, ORF7a and ORF9b [7, 8] (Fig. 2A). 
However, the induction of apoptosis by SARS-CoV 
ORF7b has yet to be established.

ORF8 emerges as a notable viral protein, particularly 
noteworthy due to the observed deletion in 90% of 
SARS-CoV-2 strains [122–126]. This deletion is impli-
cated in enhancing the virus’s adaptability and facili-
tating its global dissemination [124], often correlating 

with milder manifestations of COVID-19 [122]. SARS-
CoV-2 ORF8 shares a striking 95% homology with 
Bat-CoV (RaTG13) ORF8, while exhibiting only 30% 
amino acid sequence similarity with SARS-CoV 
ORF8ab [127]. The latter originates predominantly 
from greater horseshoe bats, Rhinolophus ferrumequi-
num (SARSr-Rf-BatCoV) and Chinese horseshoe bats, 
Rhinolophus sinicus (SARSr-Rs-BatCoV) [128, 129]. 
During early propagation, a 29-nucleotide deletion led 
to the splitting of the original ORF8 into ORF8a and 
ORF8b [130, 131]. Previous investigations suggest that 
neither SARS-CoV-2 ORF8 nor ORF10 possess apop-
totic-inducing capabilities [132]. Interestingly, SARS-
CoV ORF8a promote apoptosis and facilitates viral 
infection through a mitochondria-dependent pathway 
[116, 117], possibly attributed to its mitochondrial 
localization [116, 118] (Fig.  3A). On the other hand, 
SARS-CoV ORF8b induces cell death through a dis-
tinct mechanism, accumulating intracellularly and 
leading to ER stress and autophagy. This cascade trig-
gers the activation of NOD-, LRR- and pyrin domain-
containing protein 3 (NLRP3) inflammasomes within 
lung epithelial cells, and ultimately in pyroptosis [133].

Both SARS-CoV-2 ORF9b and SARS-CoV ORF9b 
localize to the mitochondria and interact with the 
translocase of outer mitochondrial membrane 70 
(Tom70) to form the Tom70/Hsp90/IRF3/Bax complex, 
which inhibits IFN-I signaling and promotes apoptosis 
[100–105] (Fig.  3A). Meanwhile, the apoptosis is sig-
nificantly increased when the nuclear export of ORF9b 
is blocked, which may be related to the interaction of 
ORF9b with apoptosis-related transcription factors in 
the nucleus [101].

Some studies suggest that SARS-CoV-2 ORF9c may 
enhance the transcription of apoptosis-related genes 
in human cardiomyocytes by influencing adenosine 
5’-triphosphate (ATP) metabolism, which may lead to 
heart disease induced by COVID-19 [106] (Fig. 3A). It 
has been observed that the administration of Ivermec-
tin and Meclozine can restore cellular ATP levels and 
ameliorate SARS-CoV-2 ORF9c-induced cardiomyo-
cyte apoptosis and dysfunction [106].

In summary, although some viral proteins are still 
unknown whether they can regulate apoptosis, exist-
ing reports have shown that non-structural proteins 
encoded by highly pathogenic coronaviruses induce 
apoptosis and promote viral survival through multiple 
mechanisms. In  vitro experiments have demonstrated 
that apoptosis inhibitors can significantly inhibit the 
replication of highly pathogenic coronaviruses [37]. 
This further underscores the critical role of apoptosis in 
the survival of these virus.
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The important role of expressing more non‑structural 
proteins by highly pathogenic coronaviruses 
in virus‑induced cell apoptosis
Highly pathogenic coronaviruses exhibit heightened 
replication efficiency and transmissibility compared to 
their low-pathogenic counterparts [47], potentially due 
to the increased abundance of non-structural proteins 
they encode (Fig.  2B). While research on the induction 
of apoptosis by low-pathogenic coronaviruses is limited 
[134–136], existing studies suggest that highly patho-
genic coronaviruses promote the expression of more 
pro-apoptotic genes [134–136]. Non-structural proteins 
by highly pathogenic coronaviruses plays a pivotal role 
in inducing cell apoptosis through multiple mechanisms. 
Importantly, innate immunity is also impaired during 
the process, which benefits the virus’s replication and 
dissemination within the host, leading to exacerbated 
pathology and disease severity (Table  2). Understand-
ing this mechanism is essential for comprehending the 
virulence and pathogenesis of highly pathogenic corona-
viruses, offering insights for the development of targeted 
therapeutic interventions aimed at mitigating virus-
induced cell apoptosis and reducing disease severity. 
Ultimately, unraveling the intricacies of non-structural 
protein-mediated apoptosis sheds light on potential ave-
nues for effective intervention against highly pathogenic 
coronaviruses and related viral diseases.

Application and limitations of apoptosis inhibitors 
in antiviral research
The use of apoptosis inhibitors has shown promise in 
inhibiting coronavirus-induced apoptosis and attenuat-
ing viral replication. To explore the potential of apoptosis 
inhibitors as antiviral drugs, with a focus on their appli-
cation in the field of coronaviruses is meaningful. Addi-
tionally, the limitations and the need for further research 
and improvement in the clinical application of apoptosis 
inhibitors against viruses should be discussed.

Highly pathogenic coronaviruses use caspase fam-
ily members to promote viral survival and immune 
evasion. In  vitro and in  vivo experiments have proved 
that caspase members have the function of antagoniz-
ing key proteins of innate immune pathway and helping 
viral immune evasion, and caspase inhibitors effec-
tively inhibit the replication of coronavirus, alleviate 
lung damage and excessive immune response in mice 
caused by viral infection, and significantly improve the 
survival rate [37, 38]. It is worth noting that caspase-6 
inhibitors did not affect the replication of influenza 
virus (H1N1) or enterovirus (EV-A71), and it is pos-
sible that apoptosis has a significant effect on the rep-
lication of coronavirus, but not on other viruses [38]. 

Despite this, different inhibitors of the apoptotic path-
way exhibit varying efficacy against different coronavi-
ruses. For example, caspase-6 and PERK inhibitors have 
a significant therapeutic effect on MERS-CoV-infected 
mice but have poor efficacy on SARS-CoV and SARS-
CoV-2 infected mice [37, 38]. Understanding the spe-
cific caspase proteins involved in viral replication and 
identifying corresponding inhibitors are crucial for the 
treatment of highly pathogenic coronaviruses.

In current coronavirus research, inhibiting apopto-
sis activation through apoptosis inhibitors has shown 
promise in curbing viral replication. Certain PARP 
inhibitors, including Olaparib [137–139], Stenoparib 
[140], and CVL218 [141, 142], exhibit antiviral effects 
against highly pathogenic coronaviruses.They effec-
tively control viral replication, mitigate inflammatory 
responses, and alleviate pathological changes. Combin-
ing PARP inhibitors with Remdesivir enhances their 
efficacy in inhibiting coronaviruses, presenting a sig-
nificant potential in treating highly pathogenic corona-
virus infections. While some apoptosis inhibitors have 
demonstrated efficacy in animal and cell studies, their 
clinical application as antiviral drugs lacks established 
protocols and requires further refinement and research.
Furthermore, the susceptibility of other mammals to 
coronavirus infection and their reliance on caspase 
remains unclear. Considering the reports that swine 
acute diarrhea syndrome coronavirus (SADS-CoV) may 
spread across species and become the next zoonotic 
coronavirus [143], the study on investigating the role of 
caspase in mammalian susceptible coronaviruses could 
aid in timely response to outbreaks and facilitate the 
development of effective therapeutic drugs.

However, the clinical application of apoptosis inhibi-
tors for the treatment of viral infections is currently lim-
ited due to associated side effects. Studies have indicated 
that certain caspase proteins inhibit the production of 
IFN-I, a key mediator of antiviral immune responses. It 
has been shown that caspase-9, caspase-3, and caspase-7 
can inhibit the production of IFN-I mediated by the 
cGAS-STING signaling pathway [41, 43]. In human cells, 
caspase-3 suppresses IFN-I in a manner independent 
of mtDNA, reduces cytokine release by cleaving cGAS, 
mitochondrial antiviral signaling protein (MAVS), and 
interferon regulatory factor 3 (IRF3) [39], and silences 
apoptotic cell immunity, as is caspase-7 in mice cells [39]. 
As a consequence, the suppression of caspases’s func-
tion may probably lead to excessive immune activation 
and inflammatory cytokine storm, posing a risk dur-
ing the treatment of patients with coronavirus infection. 
Therefore, addressing the issue of potential side effects 
is crucial in the development of apoptosis inhibitors for 
antiviral therapy.
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Conclusion remarks
Apoptosis plays an important role in both physiologi-
cal processes and the pathogenesis of highly pathogenic 
coronaviruses, as well as an important driver of disease 
progression. More and more studies have proved that 
apoptosis serves not only as a means for the host to 
reduce viral replication and facilitate viral clearance, but 
also as a strategy employed by viruses to antagonize the 
host immune system surveillance and response, as well 
as exploit apoptosis and its components to suppress the 
production of antiviral factors, bolster viral replication, 
and augment infectivity.

While SARS-CoV-2 infection has been linked to vari-
ous modes of cell death, including apoptosis, pyroptosis, 
and ferroptosis [45, 48, 144, 145], studies indicate that the 
lungs have a higher proportion of pyroptosis and necrop-
tosis, while the upper respiratory tract, with a greater 
viral load, tends towards apoptosis. [48, 146]. This obser-
vatiobsuggests that apoptosis imay be more conducive to 
viral replication than pyroptosis and necroptosis. Moreo-
ver, the latest in vivo experimental evidence suggests that 
necroptosis has no significant effect on viral transmis-
sion, disease pathology, or early host immune responses, 
independent of disease progression [147]. Consequently, 
targeting mixed lineage kinase domain-like pseudoki-
nase (MLKL), a key protein in the necroptotic pathway, 
with antiviral drugs may yield limited effectiveness.
High pathogenic strains have evolved additional non-
structural proteins that regulate apoptosis in tandem 
with the encoded structural proteins. Simultaneously, 
these non-structural proteins promote viral survival in 
a way that antagonize innate immunity. Although not all 
virus-encoded proteins induce apoptosis, many reported 
apoptosis-related proteins indeed trigger this process, 
and each protein is presumed to play a role in viral rep-
lication regulation. This phenomenon likely stems from 
the necessity, during the early stages of virus invasion, 
to maintain host cell integrity to facilitate optimal condi-
tions for viral replication. Structural proteins introduced 
into cells during viral invasion play a role in inhibiting 
apoptosis at this stage. However, upon completing repli-
cation, the virus aims to release a multitude of viral parti-
cles from the cell through apoptosis, thereby dampening 
the host immune response and diminishing the likelihood 
of elimination. Consequently, numerous virus-encoded 
proteins are involved in regulating apoptosis induction. 
Different viral proteins possess varying abilities to induce 
apoptosis at distinct stages of viral replication, targeting 
diverse pathways to ensure apoptosis of virus-infected 
cells. Highly pathogenic coronaviruses rely on a larger 
array of non-structural proteins to modulate apoptosis, 
a process pivotal in augmenting viral replication, exacer-
bating tissue and organ damage, and advancing disease 

progression. In summary, apoptosis contributes to multi-
ple organ failure and microcirculation disorders through 
diverse mechanisms, resulting in elevated patient mor-
tality rates and unfavorable clinical outcomes.The high 
pathogenicity of coronavirus-encoded proteins in effi-
ciently inducing apoptosis has garnered interest in their 
potential use for treating small cell lung cancer. Specifi-
cally, the S proteins of SARS-CoV-2 have been shown to 
induce apoptosis and can successfully induce tumor cell 
apoptosis in mice models when administered intranasally 
[148]. However, it is regrettable that this has only been 
verified in animal experiments, and further research is 
necessary to bolster the validation of clinical trials and 
eventually apply them to clinical practice. It has also 
been reported that in vitro experiments, lentiviral parti-
cles Gag-CASP8-VLPs, carrying activated caspase-8 and 
constructed using the VSV G protein (VSV-G) as the vec-
tor, can enter breast cancer cells and inhibit tumor cell 
growth [149]. In the future, small molecule drugs that 
mimic the structure of the key functional domains of 
highly pathogenic coronavirus proteins may be applied to 
target tumor cells and induce tumor cell death, providing 
a new perspective in tumor treatment.

Here, we systematically summarized the mechanism 
and biological significance of apoptosis induced by highly 
pathogenic coronaviruses structural and non-structural 
proteins, caspase-mediated survival strategies in highly 
pathogenic coronaviruses and the potential of apopto-
sis inhibitors in antiviral research. Further study should 
focus on the investigating the network-based research 
on viral proteins and key compositions in the apoptosis 
pathway. Furthermore, combining this knowledge with 
other antiviral medicines may help inhibit viral infection 
and alleviate tissue and organ damage. By simulating how 
highly pathogenic coronavirus-encoded proteins activate 
apoptosis, researchers can identify or design small mol-
ecule drugs with the ability to target and activate apopto-
sis in tumor cells. These efforts could unlock new insights 
into the biological function of highly pathogenic corona-
virus proteins and the regulatory mechanism of apopto-
sis. Such in-depth research holds great significance in our 
understanding of the pathogenic mechanisms of corona-
viruses, the development of effective treatment strate-
gies, and the prevention of new infectious diseases.
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