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Abstract

In this article, we formulate and analyze a mathematical model for the coinfection of
HBV and COVID-19 that incorporates the effects of Brownian and Lévi noise. We studied
the dynamics and effects of these diseases in a given population. First, we establish the basic
reproduction number of the disease-free equilibrium point of the stochastic model by means of
a suitable Lyapunov function. Additionally, we provided sufficient conditions for the stability
of the model around the disease-free equilibrium points. Finally, using a few simulation
studies, we demonstrate our theoretical results. In particularly, we derived threshold values
for HBV only Rs

0H , COVID-19 only, Rs
0C , and coinfection Rs

0HC for the stochastic model
around disease-free equilibrium point. Next, the conditions for stability in the stochastic sense
for HBV only, COVID-19 only submodels, and the full model are established. Furthermore,
we devote our concentrated attention to sufficient conditions for extinction and persistence
using each of these reproductive numbers. Finally, by using the Euler–Murayama scheme, we
demonstrate the dynamics of the coinfection by means of numerical simulations.
Keywords: COVID-19, Hepatitis, Stochastic model, Lévi noise, Global Stability, Local
Stability

1 Introduction

Both Coronavirus Disease 2019 (COVID-19) and Hepatitis B virus (HBV) infections remain major
public health threats [4]. COVID-19 is caused by Severe Acute Respiratory Syndrome Corona
virus 2 (SARS-CoV-2) and affect the functionality of the respiratory system. It is spread from
one person to another by coming into direct contact with respiratory droplets from an infected
individual. It can also spread by touching surfaces contaminated with the virus and then touching
the face. On the other hand, HBV disease is caused by the hepatitis B virus and is associated
with serious liver infection, leading to liver malfunction, including cirrhosis, liver fibrosis, and
hepatocellular carcinoma. Both COVID-19 and HBV are life-threatening diseases that have been
declared global health problems [18]. For example, [32] reported that more than 3 billion people are
infected with HBV globally. An estimated 7 million COVID-19 deaths and 700 million infections
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have been reported since December 2019 [18]. These statistics demonstrate how devastating HBV
and COVID-19 diseases are worldwide. Presently, global efforts have been made to develop and
distribute COVID-19 vaccines, aiming to reduce severe illness, hospitalizations, and deaths.

Over the years, mathematical models have provided frameworks for explaining transmission
dynamics and for making necessary interventions for several infectious diseases; see, e.g. [2, 11, 28,
5, 7, 16]. Several models of COVID-19, HBV and other infectious disease transmission dynamics
have been developed in the literature.

The transmission dynamics of COVID-19, HBV, and other diseases have been extensively
studied, mostly in isolation. Both deterministic and stochastic models have been developed to
understand the spread of these diseases [13, 11, 9]. In [11], the authors deemed the susceptible-
exposed-infectious-recovered (SEIR) model introduced by [34] to describe the transmission dynam-
ics and forecast the national and global spread of COVID-19 disease to be simplistic and largely
unrealistic because it excluded the relapse from recovered class to susceptible class. Like [34],
authors including [22, 30] also made an assumption of no relapse from the recovered to the sus-
ceptible class, an assumption that is critiqued in [28]. [26] examine the extinction and persistence
for a HBV only model and also conducted simulations on the model.

Amidst inconclusive findings from clinical studies on whether one disease increases the severity
of another disease in the event of coinfection ( see e.g. in [4, 29]), there has been a spike in interest
for both clinical and theoretical scientific research on disease coinfections in recent times. The
theoretical study of coinfection through mathematical modelling will be valuable to shaping our
understanding of transmission dynamics of these diseases. A number of studies that have been
done on co-dynamics of COVID-19 including Dengue [23], cholera [10], malaria, [20, 1, 21, 3, 19]
and co-dynamics s TB , see, e.g. [24, 14]. [29] employed a deterministic model and examined
the effects of optimal control strategies on the Covid-19, HBV coinfection transmission. On the
other hand, [8] examined COVID-19 and HBV coinfection by employing Gaussian noise to explain
the perturbation in observed data for the COVID-19 and Malaria coinfection model. Stochastic
coinfection models are very scarce in literature, and more so for COVID-19 and HBV Stochastic
coinfection models. While mathematical models, see, e.g., [17, 28], have been proposed to describe
the dynamics of diseases including COVID-19 and HBV, there is a dearth in studies imprint the
effect stochastic perturbations on COVID-19-HBV coinfection. In this paper, we employ both
Gaussian noise and Non-Gaussian noise to explain the noise in the Coinfection of COVID -19
and HBV in the presence of COVID-19 Vaccination, and determine conditions for extinction and
persistence for the coinfection model.

Stochastic coinfection SIRS models unlike classic or deterministic SIRS models, incorporate the
effects of random fluctuations in the transmission dynamics of disease and recovery rates, as well
as the possibility of coinfection by different diseases. In [35, 15], the authors formulated techniques
for examining existence, uniqueness and persistence of solution. Understanding and analysing
the dynamics of infectious illness transmission in both humans and animals can benefit from
mathematical modelling. The persistence or extinction of the diseases depends on several factors,
such as the basic reproduction numbers, the coinfection rates, and the stochastic perturbations;
hence, determining the conditions for the persistence or extinction of the diseases is a cumbersome
task. One of the methods proposed to analyze the persistence or extinction of stochastic coinfection
SIRS models is the use of Lyapunov functions, which are scalar functions that measure the distance
from an equilibrium point [33]. For example, [33] employed Lyapunov functions to show that if the
basic reproduction numbers of both diseases are less than one, then the disease-free equilibrium
is globally asymptotically stable for a stochastic coinfection SIRS model with nonlinear incidence
rates and cross-immunity effects. In this paper we develop condition for extinction and persistence
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for coinfection model.
In this article, we will formulate a mathematical model which builds on (2) of [8] by firstly

assuming relapse to susceptible state. The new model includes COVID-19 vaccination state, and
also assume the presence of both standard random fluctuation and massive disturbances which
arise due to sudden environmental shocks in the transmission dynamics. The novel coinfection
model will open up some new avenues for further research in stochastic modelling dynamics of
coinfection of diseases. Specifically, our study seeks to investigate the following objectives:

1. To develop a compartmental model for explaining the transmission dynamics of HBV-COVID-
19 coinfection.

2. To establish the Invariance and Positivity of the stochastic system for coinfection Model.

3. To determine the basic Reproductive number for Stochastic HBV Only, COVID-19 Only and
Coinfection models respectively.

4. To determine conditions for stability at Disease Free Equilibrium for Stochastic HBV Only,
COVID-19 Only and coinfection models respectively using Brownian Noise and Poisson Lévi
Noise.

5. To present numerical simulations and discussions of the model.

The rest of the paper is organised as follows; Section 2 discusses the Mathematical Model and
the underlying assumptions. In Section 3, we analyze the COVID-19, and HBV sub-models as well
as the Coinfection model. Section 4 is devoted to discussing the numerical method and numerical
simulation of the model. Finally, we present the conclusion in Section 5.

2 Mathematical Model Formulation

In this section, we consider a stochastic compartmental mathematical model that uses differential
equations, see Figure 1.

Figure 1: Compartmental diagram for the COVID-19 Hepatitis B coinfection cohort.
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The sub-populations of the human population at time t, denoted by N(t), include susceptible
individuals S(t), COVID-19 vaccinated individuals V (t), COVID-19 infected individuals IC(t),
Hepatitis-B infected individuals IH(t), individuals infected with both COVID-19 and Hepatitis-B
IHC(t), and recovered individuals R(t).

We will consider the following assumptions;

(A1) The total human population (N(t)) is a sum of all the different compartments, i.e.

N(t) = S(t) + IC(t) + IH(t) + IHC(t) +R(t) + V (t). (1)

(A2) Covid-19 Vaccination wears off after some period of time.

(A3) There is relapse to susceptible state,

(A4) There is no vertical transmission.



dS(t)

dt
= ψ + σV V (t) + σRR(t)− (βHIH(t) + βCIC(t) + βHCIHC)S(t)− (µ+ θ)S(t)

dIH(t)

dt
= βHIH(t)S(t)− δ1IH(t)IC(t)− (α + µ)IH(t)− ρHIH(t)

dIC(t)

dt
= βCIC(t)S(t)− δ2IC(t)IH(t)− (γ + µ)IC(t)− ρCIC(t)

dIHC(t)

dt
= βHCIHC(t)S(t) + δ1IH(t)IC(t) + δ2IC(t)IH(t)− (η + µ)IHC(t)− ρHCIHC(t)

dR(t)

dt
= ρHIH(t) + ρCIC(t) + ρHCIHC(t)− σRR(t)− µR(t)

dV (t)

dt
= θS(t)− µV (t)− σV V (t),

(2)

with initial conditions S(0) > 0, IC(0) ≥ 0, IH(0) ≥ 0, IHC(0) ≥ 0, R(0) ≥ 0, V (0) ≥ 0. βC , βH are
the effective contact rate for COVID-19, and HBV respectively.

Two popular ways to introduce stochastic factors into epidemic models are: (i) to assume some
small and standard random fluctuation, (ii) to assume massive disturbances caused by sudden
environmental shocks. The first, is described by Gaussian white noise while the second is described
by the Lévy noise. It is assumed that fluctuations in the environment will manifest mainly as
fluctuations in the parameter β, i.e. β −→ β + ϵidBi(t), (i = 1, 2, ..., 6), where dBi(t) is a one
dimensional standard Brownian motion with Bi(0) = 0, and ϵi is the intensity of the white noise.
Also a multiplicative noise is considered in our model, as random term depends on the state space,
e.g. [8]. The Lévy jump process, thus, is divided into linear drift term, Brownian motion and
compensated Poisson Process. The stochastic model of the system (2) takes the following form:
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Table 1: Parameters and description

Parameter Description of Parameters
ψ Recruitment rates of human
βC Effective contact rates for COVID -19
βH Effective contact rates for HBV
βHC Effective contact rates for Coinfection
δ1 COVID-19 Effective contact rates for HBV infectious humans.
δ2 HBV Effective contact rates for COVID -19 infectious humans.
ρH Recovery rate for HBV infected individual IH
ρC Recovery rate for COVID-19 infected individuals IC
ρHC Recovery rate for Coinfected individuals IHC
σ COVID-19 immunity waning rate
θ COVID-19 Vaccination rate
µ Natural Death rate of humans
γ COVID-19 induced death rate
α HBV induced death rate



dS(t) =
[
ψ + σV V (t) + σRR(t)− (βHIH(t) + βCIC(t) + βHCIHC)S(t)− (µ+ θ)

S(t)
]
dt+ ϵ1S(t)dB1(t) +

∫
U Ψ1(u)S(s

−)Ñ (dt, du),

dIH(t) =
[
βHIH(t)S − δ1IH(t)IC(t)− (α + µ+ ρH)IH(t)

]
dt+ ϵ2IH(t)dB2(t)

+
∫
U Ψ2(u)IH(s

−)Ñ (dt, du),

dIC(t) =
[
βCIC(t)S − δ2IC(t)IH(t)− (γ + µ+ ρC)IC(t)

]
dt+ ϵ3IC(t)dB3(t)

+
∫
U Ψ3(u)IC(s

−)Ñ (dt, du),

dIHC(t) =
[
βHCIHC(t)S + δ1IH(t)IC(t) + δ2IC(t)IH(t)− (η + µ)IHC(t)− ρHCIHC(t)

]
dt

+ϵ4IHC(t)dB4(t) +
∫
U Ψ4(u)IHC(s

−)Ñ (dt, du),

dR(t) =
[
ρHIH(t) + ρCIC(t) + ρHCIHC(t)− (σR + µ)R(t)

]
dt+ ϵ5R(t)dB5(t)

+
∫
U Ψ5(u)R(s

−)Ñ (dt, du),

dV (t) =
[
θS(t)− µV (t)− σV V (t)

]
dt+ ϵ6V (t)dB6(t) +

∫
U Ψ6(u)V (s−)Ñ (dt, du),

(3)

where dBi(t) is independent of Ñ . N is a Poisson counting measure with compensating martin-
gale Ñ and characteristic measure v on a measurable subset U ∈ (0,∞) where v(U) ≤ ∞ and
Ψi : U → ℜ (i = 1, 2, 3, 4, 5, 6) denotes the effects of random jumps and is bounded and contin-
uous. It is assumed that v is a Levy measure so that Ñ = N (dt, du) − v(du)dt. We note that
S(t−), IH(t

−), IC(t
−), IHC(t

−), R(t−), V (t−) denote the left limits of S(t), IH(t), IC(t), IHC(t), R(t), V (t)
respectively.

The following definitions are necessary for the analysis of the stochastic model.

Definition 1 (Itô-Lévi [26]). First, set ℜd
+ = {χi ∈ ℜd

+, χ > 0, d ≥ 1}. Suppose a complete
probability space

(
Ω, F, Ft ≥ 0, P

)
with filtration Ft ≥ 0, which satisfies the usual conditions. Bi(t)

is defined on this probability space.
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We assume an Itô -Lévi process, X(t) ∈ ℜ+, of the form

dX(t) = F (X(t−), t−)dt+G(X(t−), t−)dB(t) +

∫
U
Ψ(X(t−), t−, u)Ñ (dt, du), (4)

where, F : ℜn × ℜ+ × S → ℜn, G : ℜn × ℜ+ × S → ℜn, and Ψ : ℜn × ℜ+ × S × Y →
ℜn are measurable functions and X(t−) denotes the left limit of X(t). F (X(t), t) represents the
linear drift term, G(X(t), t) the Brownian noise, Ñ (dt, du) represents the compensated Poisson
random measure, and Ψ(X, t, u) represents the intensity of jumps. It is assumed that the condition∫ t
0

(
|F (X, s)|+G2(X, s) +

∫
U Ψ2(X, s, u)v(du)

)
ds <∞

Definition 2 (Itô-Lévi Formula [26]). We consider the process X expressed by (4) and let V ∈
C2,1(ℜn ×ℜ+ × S;ℜ+) such that Y ≡ V(t,X(t)). Then, Y(t) is again an Itô-Lévi process and

dY(t) = Vt(X, t)dt+ VX(X, t)[F (X, t)dt+G(X, t)dB(t)] +
1

2
trace[GT (X, t)VXX(X, t)G(X, t)]dt

+

∫
U
[V(X +Ψ(X, t))− V(X, t)− VX(X, t)Ψ(X, t, u)]v(du)dt+

∫
U
[V(X +Ψ(X, t))

− V(X, t)]Ñ (dt, du).

(5)

Which is the representation of generalized Itô’s formula with jumps.

Vt =
∂V
∂t
,VX =

(
∂V
∂X1

,
∂V
∂X2

, ...,
∂V
∂Xn

)
,VXX =

(
∂2V

∂Xi∂Xj

)
n×n

.

To gain insights into the underlying mechanisms that drive the spread of infectious diseases to
identify the long-term behaviour of disease transmission we conduct qualitative analysis of the
stochastic model (3).

3 Qualitative Analysis of Model

In this section, we present the Positivity of the Solution to (3), determine the Reproductive Number
for Single Disease Models and Coinfection model, determine the conditions for Local and Global
equilibrium for COVID-19 only, HBV only, and for Coinfection model. Further we determine the
conditions for Extinction and Persistence for all three models.

3.1 Positivity of Model

A first step is to determine the positivity of solution to the stochastic system (3) as a negative
state will not be biologically meaningful. We will show the positivity of the first equation in(3).

Theorem 1. Let ((S(t), IH(t), ..., V (t)) be a solution of system (3), given initial values ((S(0), IH(0),
..., V (0)) ∈ Ω, where Ω ∈ ℜ+, then limt→∞ S(t) ≥ 0, limt→∞ IH(t) ≥ 0, ..., limt→∞ V (t) ≥ 0.

Proof. Let us consider (3). By eliminating terms and rearrangement, we obtain

dS(t)

S(t)
≥

[
− (βHIH(t) + βCIC(t) + βHCIHC(t))− (µ+ θ)

]
dt+ ϵ1dB(t) = −rdt+ ϵ1dB1(t), (6)
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where r = βHIH(t)+βCIC(t)+βHCIHC(t)−(µ+θ). Next, we take a function g(t, S(t)) = ln(t, S(t))
and apply Itô’s formula to get,

d lnS(t) =
1

S
dS − 1

2S2
(dS)2 =

1

S
dS − 1

2
(ϵ21dt),

dS

S
= d lnS(t) +

1

2
(ϵ21dt).

(7)

Combining (6) and (7), solving for S(t) and taking the limit we obtain,

lim
t→∞

S(t) ≥ lim
t→∞

S(0)e−(r+ 1
2
ϵ21)t+ϵ1B1(t) ≥ 0.

Hence S(t) is positive definite. Similarly, limt→∞ IH(t) ≥ 0, limt→∞ IC(t) ≥ 0, limt→∞ IHC(t) ≥
0, limt→∞R(t) ≥ 0, limt→∞ V (t) ≥ 0.

3.2 Invariant Region of Stochastic COVID-19 and Hepatitis B Coin-
fection Model

An investigation of the invariant region of the model will help us determine the set of states for
which the disease will eventually either persist or die out infinitely.

Theorem 2. Let N(t) be the population of system (3), given initial values N(0) > 0, and ϵ >
√
2ψ,

then 0 < limt→∞N(t) ≤ ψ
µ
, and (S(t), IH(t), ..., V (t)) ∈ Ω.

Proof. By adding and simplifying terms in (3) and choosing ϵ = max(ϵi) we obtain;

dN(t) ≤ (ψ − µN(t))dt+ ϵN(t)dB(t) +

∫
U
Ψ(u)N(t−)Ñ (dt, du).

dN

N
≤ ψ

N
dt+ ϵdB(t) +

∫
U
Ψ(u)Ñ (dt, du)

≤ ψdt+ ϵdB(t) +

∫
U
Ψ(u)Ñ (dt, du).

(8)

Applying (5) we have,

d lnN(t) ≤ ψdt+ ϵdB(t)− 1

2
(ϵ2dt)−

∫
U
(Ψ(u)− ln(1 + Ψ(u)))v(du)dt

+

∫
U
ln(1 + Ψ(u))Ñ (dt, du).

(9)

We let D = −
∫
U(Ψ(u − ln(1 + Ψ(u)))v(du)dt +

∫
U ln(1 + Ψ(u))Ñ (dt, du). The complementary

solution to (3)) was obtained as

N(t) ≤ N(0)e−( 1
2
ϵ2−ψ)t+ϵB(t)+

∫ t
0 D.

Next, we determine the particular solution of (8) and obtain the general solution of (8) as

N(t) ≤ N(0)e−( 1
2
ϵ2−ψ)t+ϵB(t)+

∫ t
0 D +

ψ

(µ+ ϵdB(t))
.

We then find the limt→∞ of the general equation of (8) and apply comparison to obtain

0 < lim
t→∞

N(t) ≤ lim
t→∞

N(0)e−( 1
2
ϵ2−ψ)t+ϵB(t)+

∫ t
0 D + lim

t→∞

ψ

(µ+ ϵdB(t))
≤ ψ

µ
.
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3.3 Disease Free Equilibrium Point

We consider the first equation of (3). For disease free equilibrium, we have IC(t) = 0, R(t) = 0,

and let dS(t)
dt

= 0, solve for S(t), and apply comparison to obtain,

ψ − µS(t) + ϵ1S(t)dB1 +

∫
U
Ψ1(u)S(t

−)Ñ (ds, du) = 0,

S(t) =
ψ

µ+ ϵ1(dB1) +
∫
U Ψ1(u)Ñ (ds, du)

≤ ψ

µ
.

Since 0 < ϵ1(dB1) +
∫
U Ψ1(u) < m <∞, where m is a positive constant, the final inequality is

obtained by comparison. Hence, the disease free equilibrium is given by

E0C = (S, IC , R, V ) =

(
ψ

µ
, 0, 0, 0

)
. (10)

3.4 Reproductive Number of COVID-19 only Model

Theorem 3. Given D.F.E. point E0C =
(
ψ
µ
, 0, 0, 0

)
, the Reproductive Number of COVID-19 only

model Rs
0C < 1.

Proof. Applying Itô- Lévi formula to the COVID-19 infected class of (3), we obtain

d ln IC(t) =
[
βCS(t)−

(
γ + µ+ ρC)−

ϵ23
2

)
−
∫
U
(Ψ3(u)− ln(1 + Ψ3(u)))v(du)

]
dt

+ ϵ3dB3(t) +

∫
U
(ln(1 + Ψ3(u))Ñ (dt, du).

(11)

Considering initial infections F and secondary infections V , we determine the basic reproduction
number by means of the next generation matrix as follows

F =
βCψ

µ
− 1

2
ϵ23 − ln(1 + Ψ3(u)))v(du), and V = γ + µ+ ρC ,

FV −1 = (γ + µ+ ρC)
−1
(βCψ

µ
− ϵ23

2
−
∫
U
(Ψ3(u)− ln(1 + Ψ3(u)))v(du)

)
.

Taking the spectral radius of FV −1, i.e., ρ(FV −1), we obtain,

ρ(FV −1) = Rs
0C = (γ + µ+ ρC)

−1
(
βC
ψ

µ
− ϵ23

2
−
∫
U
(Ψ3(u)− ln(1 + Ψ3(u)))v(du)

)

3.4.1 Local Stability of COVID-19 Only Model

Theorem 4. If Rs
0C < 1, then for any initial values of (S0(0), IC(0), R(0), V (0)) ∈ ℜ4

+, IC(t)

satisfies lim supt→∞
ln IC(t)

t
≤ 0
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Proof. By integrating both sides of (11)and evaluating at disease free-equilibrium point point, we
have,

ln IC(t)− ln IC(0) =
βCψt

µ
−

(
γ + µ+ ρC +

ϵ23
2

)
t+

∫ t

0

ϵ3dB3(r)dr − t

∫
U
(Ψ3(u)− ln(1 + Ψ3(u)))v(du)

+

∫ t

0

∫
U
ln(1 + Ψ3(u))Ñ (ds, du),

=

[
βCψ

µ
− (γ + µ+ ρC)−

ϵ23
2
)− E

]
t+H3(t) +A3,

where

H3(t) =

∫ t

0

ϵ3dB3(t), E =

∫
U
(Ψ3(u)−ln(1+Ψ3(u)))v(du), and A3 =

∫ t

0

∫
U
ln(1+Ψ3(u))Ñ (ds, du)

are a martingales given
∫
U ln(1 + Ψ3(u))Ñ (dt, du) < ∞, 0 ≤ t ≤ T. Dividing through by t and

taking lim supt→∞ of both sides, we get,

lim sup
t→∞

ln IC(t)

t
= lim

t→∞

ln IC(0)

t
+

[
βCψ

µ
− (γ + µ+ ρC)−

ϵ23
2
− E

]
+ lim sup

t→∞

H3(t)

t

+ lim sup
t→∞

A3

t
,

= (γ + µ+ ρC)
[ βCψ

µ(γ + µ+ ρC)
− 1− ϵ23

2(γ + µ+ ρC)
− E

(γ + µ+ ρC)

]
< 0,

≤ (γ + µ+ ρC) (Rs
0C − 1) < 0.

The final inequality holds if (Rs
0C − 1) < 0 as (γ + µ+ ρC) > 0, which implies, Rs

0C < 1.

3.4.2 Global Stability of COVID-19 Only Model

Theorem 5. If Rs
0C < 1, then E0C is globally asymptotically stable in Ω.

Proof. We consider the Lyapunov function,

L1(t) =

[
ψ + αδ +

ψθ

µδ

]
IC(t),

dL1

dt
=

[
ψ + αδ +

ψθ

µδ

]
(γ + µ+ ρC)

[ βCψ

µ(γ + µ+ ρC)
− 1 +

ϵ3dB3(t)

(γ + µ+ ρC)

+
1

γ + µ+ ρC
B
]
IC(t).

For dL1

dt
< 0,

[
βCψ
µQ

− 1 + ϵ3dB3(t)
Q

+ 1
Q
B
]
< 0, B =

∫
U Ψ3(u)Ñ (dt, du), and Q = (γ + µ+ ρC).

[βCψ
µQ

− 1− ϵ23
2Q

− E
Q

]
<

[βCψ
µQ

− 1 +
ϵ3dB3(t)

Q
+

1

Q
B
]
< 0,

since Rs
0C < 1. Hence L1 is globally stable in the domain Ω.
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3.5 Basic Reproduction Number for HBV Model

We consider only HBV transmission in human. The model of the system is given as (3).

Theorem 6. Given D.F.E. point E0H =
(
ψ
µ
, 0, 0, 0

)
then the Reproductive Number of HBV only

Model Rs
0H < 1.

Proof. Applying Itô- Lévi formula to the HBV infected class of (3), we obtain,

d ln IH(t) =
(
βHS(t)−

(
α + µ+ ρH +

ϵ22
2

)
−
∫
U
(Ψ2(u)− ln(1 + Ψ2(u)))v(du)

)
dt

+ ϵ2dB2(t) +

∫
U
(ln(1 + Ψ2(u))Ñ (dt, du).

(12)

Considering initial infections F and secondary infections V , we determine the basic reproduction
number by means of the next generation matrix as follows;

F =
βHψ

µ
− 1

2
ϵ22 −

∫
U
(Ψ2(u)− ln(1 + Ψ2(u)))v(du), and V = α + µ+ ρH ,

FV −1 = (α + µ+ ρH)
−1
(βHψ

µ
− ϵ23

2
−
∫
U
(Ψ2(u)− ln(1 + Ψ2(u)))v(du)

)
.

Taking the spectral radius of FV −1, i.e., ρ(FV −1), we obtain,

ρ(FV −1) = Rs
0H = (α + µ+ ρH)

−1
(βHψ

µ
− ϵ22

2
−
∫
U
(Ψ2(u)− ln(1 + Ψ2(u)))v(du)

)
. (13)

3.5.1 Local Stability of HBV Only Model

Theorem 7. If Rs
0H < 1, then for any initial values of (S0(0), IH(0), R(0)) ∈ ℜ3

+, I(t) satisfies

lim supt→∞
ln IH(t)

t
≤ 0.

Proof. We integrate both sides of (12)and evaluate at D.F.E. point to obtain,

ln IH(t) = ln IH(0) +

[
βHψ

µ
− (α + µ+ ρH)−

ϵ22
2
− E

]
t+H2(t) +A2,

Next, we divide through by t, find lim supt→∞ and apply the strong law of Martingales as follows,

lim sup
t→∞

ln IH(t)

t
= lim

t→∞

ln IH(0)

t
+

[
βHψ

µ
− (α + µ+ ρH)−

ϵ22
2
− E

]
+ lim sup

t→∞

H2(t)

t

+ lim sup
t→∞

A2

t
,

= (α + µ+ ρH)
[ βHψ

µ(α + µ+ ρH)
− 1− ϵ22

2(α+ µ+ ρH)
− E

(α + µ+ ρH)

]
< 0,

≤ (α + µ+ ρH) (Rs
0H − 1) < 0,

which completes the proof. (Rs
0H − 1) < 0 as (α + µ + ρH) > 0, which implies, Rs

0H < 1 where
H2(t) =

∫ t
0
ϵ2dB2(t), E =

∫
U(Ψ2(u)− ln(1 + Ψ2(u)))v(du), and A2 =

∫ t
0

∫
U ln(1 + Ψ2(u))Ñ (ds, du)

are a martingales given
∫
U ln(1 + Ψ2(u))Ñ (dt, du) <∞, 0 ≤ t ≤ T.
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3.5.2 Global Stability of HBV Only Model

Theorem 8. If Rs
0H < 1, then E0H is globally asymptotically stable in Ω

Proof. We consider the Lyapunov function L2,

L2(t) =

[
ψ + αδ +

ψθ

µδ

]
IH(t),

dL2

dt
=

[
ψ + αδ +

ψθ

µδ

]
(α + µ+ ρH)

[ βHψ

µ(α + µ+ ρH)
− 1 +

ϵ2dB2(t)

(α + µ+ ρH)

+
1

α + µ+ ρH
B
]
IH(t).

For dL2

dt
< 0,

[
βHψ
µP

− 1 + ϵ2dB2(t)
P

+ 1
P
B
]
< 0, B =

∫
U Ψ2(u)Ñ (dt, du), and P = (α + µ+ ρH).[βHψ

µP
− 1− ϵ22

2P
− E

P

]
<

[βHψ
µP

− 1 +
ϵ2dB2(t)

P
+

1

P
B
]
< 0.

Rs
0H − 1 < 0.

hence L2 is globally stable in the domain Ω.

3.6 Reproductive Number of Coinfection Model

Theorem 9. Given D.F.E. point E0HC =
(
ψ
µ
, 0, 0, 0, 0, 0

)
, the Reproductive Number of Coinfection

Rs
0HC < 1.

Proof. Applying Itô- Lévi formula to the Coinfected equation of (3), we obtain,

d ln IHC(t) =

[
βHCS +

δ1IH(t)IC(t)

IHC(t)
+
δ2IC(t)IH(t)

IHC(t)
− (η + µ+ ρHC)−

ϵ24
2

+

∫
U
(Ψ4(u)− ln(1 + Ψ4(u)))v(du)

]
dt+ ϵ4dB4(t) +

∫
U
ln(1 + Ψ4(u))Ñ (dt, du).

(14)

Considering initial infections F and secondary infections V , and since 0 < IC , IH , IHC ≤ N ≤ ψ
µ

F =
βHCS

µ
+
δ1IH(t)IC(t)

IHC(t)
+
δ2IC(t)IH(t)

IHC(t)
− 1

2
ϵ24 −

∫
U
(Ψ4(u)− ln(1 + Ψ4(u)))v(du),

V = (η + µ+ ρHC)

FV −1 ≤ (η + µ+ ρHC)
−1
[βHCψ

µ
+
δ1ψ

µ
+
δ2ψ

µ
− ϵ24

2
−

∫
U
(Ψ4(u)− ln(1 + Ψ4(u)))v(du)

]
.

Taking the spectral radius of FV −1, i.e., ρ(FV −1) = Rs
0HC we obtain,

Rs
0HC = (η + µ+ ρHC)

−1

(
βHCψ

µ
+
δ1ψ

µ
+
δ2ψ

µ
− ϵ24

2
−

∫
U
(Ψ4(u)− ln(1 + Ψ4(u)))v(du)

)
.
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3.6.1 Local Stability of Disease Free Equilibrium point in the Coinfection Model

Theorem 10. If Rs
0HC < 1, then for any initial values of (S(0), IH(0), IC(0), IHC(0), R(0), V (0))

∈ ℜ6, IHC(t) satisfies lim supt→∞
ln IHC(t)

t
.

Proof. Integrating (14), eliminating terms, choosing constants, and setting G = (η + µ + ρHC)
yields,

ln IHC(t)− ln IHC(0) =
βHCψ

µ
t+ δ1

∫ t

0

IH(s)IC(s)

IHC(s)
ds+ δ2

∫ t

0

IC(s)IH(s)

IHC(s)
ds

−
[
(η + µ+ ρHC) +

ϵ24
2
− E

]
t+H4(t) +A4,

≤
[βHCψ

µ
+
δ1ψ

µ
+
δ2ψ

µ
− (η + µ+ ρHC)−

ϵ24
2
− E

]
t+H4(t) +A4.

Next, we divide through by t, find lim supt→∞ and apply the strong law of Martingales as follows,

lim sup
t→∞

ln IHC(t)

t
≤ lim

t→∞

ln IHC(0)

t
+

[
βHCψ

µ
+
δ1ψ

µ
+
δ2ψ

µ
−G− ϵ24

2
− E

]
+ lim sup

t→∞

H4(t)

t

+ lim sup
t→∞

A4

t
,

≤ (η + µ+ ρHC)
[βHCψ
µG

+
δ1ψ

µG
+
δ2ψ

µG
− 1− ϵ23

2G
− E

]
< 0,

≤ (η + µ+ ρHC) (Rs
0HC − 1) < 0.

The final inequality holds if (Rs
0HC − 1) < 0 as (η + µ+ ρC) > 0, which implies, Rs

0HC < 1 where
H4(t) =

∫ t
0
ϵ4dB4(t), E =

∫
U(Ψ4(u)− ln(1 + Ψ4(u)))v(du), and A4 =

∫ t
0

∫
U ln(1 + Ψ4(u))Ñ (ds, du)

are a martingales given
∫
U ln(1 + Ψ4(u))Ñ (dt, du) <∞, 0 ≤ t ≤ T.

3.6.2 Global Stability of Coinfection Model

Theorem 11. If Rs
0HC < 1, then E0HC is globally asymptotically stable in Ω

Proof. We consider the Lyapunov function, Net we differential and employ comparision to deter-
mine conditions for Global Stability of Coinfection.

L3(t) =

[
ψ + αδ +

ψθ

µδ

]
IHC(t),

dL3

dt
=

[
ψ + αδ +

ψθ

µδ

][
βHCS +

δ1IH(t)IC(t)

IHC(t)
+
δ2IC(t)IH(t)

IHC(t)
− (η + µ+ ρHC) + ϵ4dB4(t)

+

∫
U
Ψ4(u)Ñ (dt, du)

]
IHC(t).

For
dL3

dt
< 0,

[
βHCψ +

δ1ψ

µ
+
δ2ψ

µ
−G+ ϵ4dB4(t) + B

]
< 0, and G = (η + µ+ ρHC).[βHCψ

µG
+
δ1ψ

µG
+
δ2ψ

µG
− 1− ϵ24

2G
− E

G

]
<

[βHCψ
G

+
δ1ψ

µG
+
δ2ψ

µG
− 1 +

ϵ4dB4(t)

G
+

B
G

]
< 0,

Rs
0HC − 1 < 0,

Rs
0HC < 1.

hence L3 is globally stable in the domain Ω.
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3.7 Extinction of HBV- COVID-19 Coinfection disease

Next, we determine conditions under which the disease will eventually die out in the population
with a probability of one. In this section we study the conditions of extinction for the coinfection
model.

Definition 3. [8] We define
〈
IH(t)

〉
= 1

t

∫ t
0
IH(r)dr, and

〈
IC(t)

〉
= 1

t

∫ t
0
IC(r)dr.

Lemma 1. [25] Let (S(t), IC(t), IH(t), IHC(t), R(t), V (t)) be the positive solution of system(4)
with given initial condition (S(0), IC(0), IH(0), IHC(0), R(0), V (0)) ∈ ℜ6

+, Let also X(t) be the
positive solution of equation (4) with given initial condition given condition X(0) = N(0) =
S(0) + IC(0) + IH(0) + IHC(0) +R(0) + V (0) ∈ ℜ+. Then

1. limt→∞
X(t)
t

= 0

2. lim supt→∞
X(t)
t

= 0

3. limt→∞
1
t

∫ t
0
X(s)dW (s) = 0, and

4. limt→∞
1
t

∫ t
0

∫
U η(u)X(t−)Ñ = 0, a.s.

Theorem 12. Let (S(t), IH(t), ..., V (t)) be the solution of (3) with initial values
(
S(0), IH(0), ..., V (0) ∈

Ω
)
, the coinfection disease of model (3) goes extinct almost surely (limt→∞ IHC(t) = 0) a.s if one

of the following assumptions holds:

1. Rs
0C > 1 and max(Rs

0H ,Rs
0HC) < 1,

2. Rs
0H > 1 and max(Rs

C ,Rs
0HC) < 1,

3. max(Rs
0C ,Rs

0H ,Rs
0HC) < 1.

Proof. By integrating (3), dividing by t, adding terms, followed by some algebraic manipulations
we obtain the following equations:

µ
〈
IH(t)

〉
= ψ −

[
µ
〈
S(t)

〉
+ µ

〈
IC(t)

〉
+ µ

〈
IHC(t)

〉
+ µ

〈
R(t)

〉
+ µ

〈
V (t)

〉]
+Q(t)

−
[
(S(t)− S(0))

t
+

(IH(t)− IH(0))

t
+

(IC(t)− IC(0))

t
+

(IHC(t)− IHC(0))

t

+
(R(t)−R(0))

t
+

(V (t)− V (0))

t

]
.

(15)

µ
〈
IC(t)

〉
= ψ −

[
µ
〈
S(t)

〉
+ µ

〈
IH(t)

〉
+ µ

〈
IHC(t)

〉
+ µ

〈
R(t)

〉
+ µ

〈
V (t)

〉]
+Q(t)

−
[
(S(t)− S(0))

t
+

(IH(t)− IH(0))

t
+

(IC(t)− IC(0))

t
+

(IHC(t)− IHC(0))

t

+
(R(t)−R(0))

t
+

(V (t)− V (0))

t

]
.

(16)
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where

Q =
ϵ1
t

∫ t

0

S(r)dB(r) +
ϵ2
t

∫ t

0

IH(r)dB(r) +
ϵ3
t

∫ t

0

IC(r)dB(r) +
ϵ4
t

∫ t

0

IHC(r)dB(r)

+
ϵ5
t

∫ t

0

R(r)dB(r) +
ϵ6
t

∫ t

0

V (r)dB6(r) +
1

t

∫ t

0

∫
U
Ψ1(u)S(s

−)Ñ (ds, du)

+
1

t

∫ t

0

∫
U
Ψ2(u)IH(s

−)Ñ (ds, du) +
1

t

∫ t

0

∫
U
Ψ3(u)IC(s

−)Ñ (ds, du)

+
1

t

∫ t

0

∫
U
Ψ4(u)IHC(s

−)Ñ (ds, du) +
1

t

∫ t

0

∫
U
Ψ5(u)R(s

−)Ñ (ds, du)

+
1

t

∫ t

0

∫
U
Ψ6(u)V (s−)Ñ (ds, du)

Next, we integrate both sides (14). Since 0 ≤ IH(t), IC(t), IHC(t) < N(t) < ψ
µ
we get,

ln IHC(t) ≤ βHC

∫ t

0

ψ

µ
dr + δ1

∫ t

0

IC(r)dr + δ2

∫ t

0

IH(r)dr − (η + µ+ ρHC)t−
ϵ24t

2
+ ϵ4dB4(t)

− ϵ4dB4(0) +

∫ t

0

∫
U
ln(1 + Ψ4(u))Ñ (dt, du) + ln IHC(0).

(17)

We divide through (17) by t. Next we substituting (15) and (16) into (17) we obtain,

ln IHC(t)

t
≤ βHC

ψ

µ
+ δ1

1

t

∫ t

0

IC(r)dr + δ2
1

t

∫ t

0

IH(r)dr − (η + µ+ ρHC)−
ϵ24
2
+

1

t
ϵ4dB4(t)

− ϵ4dB4(0)

t
+

1

t

∫ t

0

∫
U
ln(1 + Ψ4(u))Ñ (dt, du) +

ln IHC(0)

t
.

(18)

ln IHC(t)

t
≤ βHC

ψ

µ
+ δ1

1

µ

[
ψ −

[
µ
〈
S(t)

〉
+ µ

〈
IH(t)

〉
+ µ

〈
IHC(t)

〉
+ µ

〈
R(t)

〉
+ µ

〈
V (t)

〉]
+Q(t)

−
[
(S(t)− S(0))

t
+

(IH(t)− IH(0))

t
+

(IC(t)− IC(0))

t
+

(IHC(t)− IHC(0))

t

+
(R(t)−R(0))

t
+

(V (t)− V (0))

t

]
.] + δ2

1

µ

[
ψ −

[
µ
〈
S(t)

〉
+ µ

〈
IC(t)

〉
+ µ

〈
IHC(t)

〉
+ µ

〈
R(t)

〉
+ µ

〈
V (t)

〉]
+Q(t)−

[
(S(t)− S(0))

t
+

(IH(t)− IH(0))

t
+

(IC(t)− IC(0))

t

+
(IHC(t)− IHC(0))

t
+

(R(t)−R(0))

t
+

(V (t)− V (0))

t

]
.]− (η + µ+ ρHC)−

ϵ24
2

+
ϵ4dB4(t)− ϵ4dB4(0)

t
+

1

t

∫ t

0

∫
U
ln(1 + Ψ4(u))Ñ (dt, du) +

ln IHC(0)

t
.

(19)
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Next, we find lim supt→∞ and apply a Lemma 2 and Lemma 1 to obtain following results,

lim sup
t→∞

ln IHC(t)

t
≤ lim sup

t→∞

[
βHC

ψ

µ
+ δ2

1

µ

[
ψ −

[
µ
〈
S(t)

〉
+ µ

〈
IH(t)

〉
+ µ

〈
IHC(t)

〉
+ µ

〈
R(t)

〉
+ µ

〈
V (t)

〉]
+Q(t)−

[
(S(t)− S(0))

t
+

(IH(t)− IH(0))

t
+

(IC(t)− IC(0))

t
+

(IHC(t)− IHC(0))

t

+
(R(t)−R(0))

t
+

(V (t)− V (0))

t

]]
+ δ1

1

µ

[
ψ −

[
µ
〈
S(t)

〉
+ µ

〈
IC(t)

〉
+ µ

〈
IHC(t)

〉
+ µ

〈
R(t)

〉
+ µ

〈
V (t)

〉]
+Q(t)−

[
(S(t)− S(0))

t
+

(IH(t)− IH(0))

t
+

(IC(t)− IC(0))

t

+
(IHC(t)− IHC(0))

t
+

(R(t)−R(0))

t
+

(V (t)− V (0))

t

]]
− (η + µ+ ρHC)−

ϵ24
2

+
ϵ4dB4(t)− ϵ4dB4(0)

t
+

1

t

∫ t

0

∫
U
ln(1 + Ψ4(u))Ñ (dt, du) +

ln IHC(0)

t

]
.

(20)

lim sup
t→∞

ln IHC(t)

t
≤

[
βHCψ

µ
+
δ1ψ

µ
+
δ2ψ

µ
− (η + µ+ ρHC)−

ϵ24
2

]
. (21)

lim sup
t→∞

ln IHC(t)

t
≤ (η + µ+ ρHC)

[
Rs

0HC − 1

]
.

Rs
0HC = Rs

0HC − 1

2

ϵ24
(η + µ+ ρHC)

≤ 1, since Rs
0HC = (η + µ+ ρHC)

−1

[
βHCψ

µ
+
δ1ψ

µ
+
δ2ψ

µ
− 1

]
< 1,

hence

lim
t→∞

sup
ln IHC(t)

t
≤ 0, and lim

t→∞

ln IHC(t)

t
≤ 0, which implies, lim

t→∞
IHC(t) = 0 (22)

Similarly, we can prove lim
t→∞

IC(t) = 0 when Rs
0C < 1, and lim

t→∞
IH(t) = 0 when Rs

0H < 1.

3.8 Persistence in mean

Persistence of a disease means that the disease will remain endemic in the population with positive
probability. We study the disease persistence for the system reported in (3) and derive that the
disease persists under certain some conditions.

Definition 4. [8] Persistent for Model (3) will hold if,

lim inf
t→∞

1

t

∫ t

0

X (r)dr ≥ 0 a.s.

Lemma 2. [6] Set g ∈ C
[
[0,∞]× Ω, (0,∞)

]
, assume that there exist ξ0, ξ > 0 such that

ln g(t) ≥ ξt− ξ0

∫ t

0

g(s)ds+G(t) a.s ∀ t ≥ 0,

such that G ∈
(
C
[
[0,∞]× Ω, (0,∞)

])
satisfying lim

t→∞
G(t)
t

= 0 a.s. Then lim
t→∞

⟨g(t)⟩ ≥ ξ
ξ0
a.s.
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Theorem 13. Let (S(t), IH(t), IC(t), IHC(t), R(t), V (t)) be a solution of system (3) with initial
values (S(0), IH(0), IC(0), IHC(0), R(0), V (0)) ∈ Ω.

1. If Rs
0H > 1 and max(Rs

0C ,Rs
0HC) < 1, the disease IH persists in mean. In addition, IH holds

lim
t→∞

⟨IH(t)⟩ ≥ (α + µ+ ρH) (Rs
0H − 1) .

2. If Rs
0C > 1, max(Rs

0H and Rs
0HC) < 1, then the disease IC is persistent in mean. In addition,

IC satisfies
lim
t→∞

⟨IC(t)⟩ ≥ (γ + µ+ ρC) (Rs
0C − 1) .

Proof. We begin with the first statement of the theorem. By rearranging terms in (15), we get:

µ
〈
S(t)

〉
= ψ −

[
µ
〈
IH(t)

〉
+ µ

〈
IC(t)

〉
+ µ

〈
IHC(t)

〉
+ µ

〈
R(t)

〉
+ µ

〈
V (t)

〉]
+Q(t)

−
[
(S(t)− S(0))

t
+

(IH(t)− IH(0))

t
+

(IC(t)− IC(0))

t
+

(IHC(t)− IHC(0))

t

+
(R(t)−R(0))

t
+

(V (t)− V (0))

t

]
.

(23)

Next, we integrate both sides of (12), and eliminate terms to obtain,

ln IH(t) ≥ βH

∫ t

0

S(t)dr −
∫ t

0

(α + µ+ ρH)dr −
1

2

∫ t

0

ϵ22dr. (24)

We divide (24) by t, substitute (23) into (24), and find lim inft→+∞ to get,

lim
t→+∞

inf
ln IH(t)

t
≥ βHψ

µ
− (α + µ+ ρH)−

1

2
ϵ22 = (α + µ+ ρH)

[
βHψ

µ(α + µ+ ρH)
− 1− ϵ22

2(α+ µ+ ρH)

]
.

Then, by Lemma 2 and since Rs
0H > 1, we conclude,

lim
t→+∞

⟨IH(t)⟩ ≥ lim
t→+∞

inf⟨IH(t)⟩ ≥ (α + µ+ ρH) (Rs
0H − 1) > 0,

which concludes the proof. Next we prove the persistence in mean for COVID-19. Let us integrate
both sides of (11), and then eliminate terms to obtain,

ln IC(t) ≥ βC

∫ t

0

S(t)dr −
∫ t

0

(γ + µ+ ρC)dr −
1

2

∫ t

0

ϵ23dr. (25)

We divide (25) by t, substitute (23) into (25), and find lim inft→+∞ to get,

lim
t→+∞

inf
ln IC(t)

t
≥ βCψ

µ
− (γ + µ+ ρC)−

ϵ23
2

= (γ + µ+ ρC)

[
βHψ

µ(γ + µ+ ρC)
− 1− ϵ22

2(γ + µ+ ρC)

]
.

Then, by Lemma 2 and since Rs
0C > 1, we conclude,

lim
t→+∞

⟨IC(t)⟩ ≥ lim
t→+∞

inf⟨IC(t)⟩ ≥ (γ + µ+ ρC) (Rs
0C − 1) > 0.

Finally in a similar way, we can prove persistence for coinfection of diseases;

lim
t→+∞

inf⟨IHC(t)⟩ ≥ (η + µ+ ρHC)

[
Rs

0HC − 1

]
> 0.
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Table 2: Parameters Values of Source

Parameter Value Source
ψ 0.3 Assumed
βH 0.003 [26]
βC 0.005 Assumed
βHC 0.001 Assumed
δ1 0.005 Assumed
δ2 0.005 Assumed
ρH 0.200 Assumed
ρC 0.424 Assumed
ρHC 0.150 Assumed
σV 0.1 Assumed
σR 0.0012 Assumed
θ 0.3 Assumed
γ 2e-3/7 Assumed
η 0.00001 Assumed
µ 0.01 Assumed
α 0.0001 Assumed
ϵ 0.1 Assumed
λ 0.5 Assumed

4 Numerical Results

In this section, we employ a standard numerical procedure In this section, we employ a standard
numerical procedure to obtain numerical simulation results for the HBV-only, COVID-19-only, and
HBV-COVID-19 coinfection models. The objective here is to verify the theoretical results obtained
earlier in this paper. The parameter values used along with their sources are displayed in Table 2.
A few values were assumed. As we sought to verify theoretical results, we selected initial values
of S(0) = 3000, IH(0) = 10, IC(0) = 10, IHC(0) = 10, R(0) = 0, V (0) = 40 The Euler-Maruyana
scheme [12] was employed in conducting the numerical simulations for all models. The results
from numerical simulation for HBV only, COVID-19 only and Confection model are presented in
Figures 2 - 8.

4.1 Hepatitis B Virus Only Model

By using fixed values of all parameters shown in Table 2 we plot the curves representing the
dynamics of the susceptible, infectious, and recovered classes in the HBV-only model (3). The
graphs of the compartments are presented in Figure 2 reveal. From the parameter values in Table
2, we obtained our basic reproduction numbers Rs

0H < 1.
We observe initially, from Figure 2 that as number of infectious population increase in time,

the susceptible population decrease. However, in the long run, the solution curves for both the
susceptible and infective compartments behave like decreasing functions and approach a fixed point.
A decrease in the number of susceptible individuals occurred within a relatively short period of
the epidemic, after which there was no marked change over time. On the other hand, the decline
in the number of infective compartments tends to increase but eventually declines to a fixed point.

Similarly, the recovered class also approach a fixed point in the long run. In other words, all
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Figure 2: Solution for HBV Only Model.

Figure 3: HBV Infection with varied effec-
tive contact rate.

Figure 4: Recoveries with varied effective re-
covery rate.

compartments will reach to the respective endemic fixed point of model (3) within a finite time
and in long run.

The numerical outcomes verifies the theorem statement that when Rs
0H < 1, then the disease

free equilibrium is locally and globally asymptotically stable . The impact of various parameter on
the transmission dynamics of HBV is explored. Numerical results are presented in Figure 3 and
Figure 4. We proceeded by first investigating the effects of effective contact rate on population
of infected individuals. This was done using selected values of effective contact rate ( βH =
0.001, 0.002, 0.003), while all remaining parameter values of the model were held constant. From
figure 3, we observe that as values of contact rate increases, there is an increased possibility for
the population to be infected by HBV, and vice versa.

Next, we investigated the effects of recovery rate on population of Recovered individuals (R(t)).
Similarly, we held all other parameters constant, and selected varied recovery rate (ρH = 0.05, 0.06,
0.07) for this investigation. We observe Figure 4, that more individuals recover with increasing
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value in ρH , thus, the reducing the number of infectious individuals. From this we can conclude
that by treating the infectious individuals the infected population goes to recovered state and HBV
is eliminated from the community.

4.2 COVID-19 Only Model

In Figure 5 simulation results representing the dynamics of Susceptible, Infectious, Vaccinated
and Recovered classes in the COVID-19 only model of(3) are displayed. Figure 5 is plotted
using combination of all compartments and by taking fixed values of parameters in Table 2. We

Figure 5: Numerical Solution for COVID-19
Only Model.

Figure 6: COVID-19 Infection for different
effective contact rates.

Figure 7: COVID-19 recoveries for different
treatment rates.

observe initially, from Figure 5 that as number of infectious population increase in time, susceptible
population sharply decrease. However, in the long run, the solution curves for both Susceptible
and infective compartments behave like decreasing functions and approach reach to a fixed point.
The decline in the number of infective compartment occurs during the after the twentieth time
step of the epidemic, after which there is no remarkable change over time, but for fluctuations
around the deterministic solution.
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Similarly, the remaining classes, the vaccinated, and recovered populations also approach fix
points in the long run. Thus, all compartments will reach to the respective endemic fixed point of
the COVID-19 only model in (3) within a finite time and in long run.

The numerical outcomes verifies the theorem’ statement that when Rs
0C < 1, then the disease

free equilibrium is locally and globally asymptotically stable .
The impact of various parameter on the transmission dynamics of COVID-19 was explored.

Numerical results are presented in Figure 6 and Figure 7. We proceeded by first investigating the
effects of effective contact rate on population of infected individuals. This was done using selected
values of effective contact rate (βC = 0.005, 0.006, 0.007), while all remaining parameter values of
the model were held constant. Figure 6, shows that as the contact rate increases, the probability
that the population will be infected by diseases increases, and vice versa.

Next, we examine the effects of recovery rate on population of COVID-19 recoveries RC(t).
Again, while we held all other parameters constant, we used various recovery rate (ρC = 0.3, 0.4,
0.5). We observe in Figure 7, that more individuals recover with increasing value in ρHC , thus,
the reducing the number of COVID-19 infections in the population.

4.3 Coinfection Model

Figure 8 reveals that the curves representing the dynamics of Susceptible, Infectious, Vaccinated
and Recovered classes in the coinfection model (3). Figure 8 is plotted using fixed values of all
parameters from Table 2 we obtained our basic reproduction numbers Rs

0HC < 1.
We observe initially, from Figure 8 that as number of infectious population increase in time,

susceptible population will decrease, however, in the long run, the solution curves for Susceptible
and infective compartments IC , IH , and IHC behave like decreasing functions and approach reach
to a fixed point over time, but for oscillation around their deterministic path due to the presence
of the noise.

Figure 8: Numerical Solution for coInfection
Model.

Similarly, the all remaining classes either decrease to zero or also approach to the fixed points
in the long run. In other words, all compartments will reach to the respective endemic fixed point
of model (3) within a finite time and in long run. The numerical outcomes verifies Theory 10 which
states that when Rs

0HC < 1, then the disease free equilibrium is locally and globally asymptotically
stable.
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Figure 9: Coinfection for different effective
contact rates.

Figure 10: Coinfection recoveries for differ-
ent treatment rates.

The impact of various parameter on the transmission dynamics of COVID-19 -HBV coinfection
is explored. Numerical results are presented in Figure 9 and Figure 10. We proceed by first
investigating the effects of effective contact rate on population of infected individuals. This was
done using selected values of effective contact rate (βHC = 0.001, 0.002, 0.003) , while all remaining
parameter values of the model were held constant. From figure 9, we observe that as values of
contact rate increases, there is an increased chance for the population to be infected by both
diseases, and vice versa.

Next, we examine the effects of recovery rate on population of Coinfected recoveries RHC(t).
Again, while we held all other parameters constant, we made use of varied recovery rate (ρHC =
0.1, 0.15, 0.2). We observe in Figure 10, that more individuals recover with increasing value in
ρHC , thus, the reducing the number of coinfectious in the population.

5 Conclusion

The majority of issues in the real world are not deterministic. Because of its proximity to ambient
sounds, the stochastic models allow us to model epidemic diseases in a more realistic manner. In
this paper, two distinct diseases were used to study a stochastically perturbed SIRS-type model.
Emphasis was given to explaining the effect of small fluctuations and perturbations due to sudden
environmental shocks in the coinfection transmission dynamics, hence, the inclusion of the white
noise and the Lévy noise. To determine the conditions for the local asymptotic stability of the equi-
libria, we first computed the reproductive number and the equilibria for the underlying stochastic
model (3). Furthermore, the conditions of extinction and persistence of HBV only, COVID-19
only, and coinfection model we investigated, and it was shown that persistence for all models were
dependent on the intensity of the white noise and the values of epidemic parameters involved in
disease transmission.

Additionally, we demonstrated the influence of different parameters on the infectious compart-
ments and demonstrated a broad variety of simulation results for all three stochastic models.
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