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Abstract: The oncofetal RNA-binding protein IGF2BP1 has been reported to be a driver of tumor
progression in a multitude of cancer entities. Its main function is the stabilization of target transcripts
by shielding these from miRNA-mediated degradation. However, there is growing evidence that
several virus species recruit IGF2BP1 to promote their propagation. In particular, tumor-promoting
viruses, such as hepatitis B/C and human papillomaviruses, benefit from IGF2BP1. Moreover, recent
evidence suggests that non-oncogenic viruses, such as SARS-CoV-2, also take advantage of IGF2BP1.
The only virus inhibited by IGF2BP1 reported to date is HIV-1. This review summarizes the current
knowledge about the interactions between IGF2BP1 and different virus species. It further recapitulates
several findings by presenting analyses from publicly available high-throughput datasets.
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1. Introduction

Viruses actively reprogram the metabolism of their host cells to support the infection
process and facilitate the escape or suppression of host defense mechanisms. To achieve
this, the virus relies on interactions with host cell components that are exploited to promote
the processes augmenting virus spreading [1]. The reprogramming of cellular metabolism
following many viral infections is reminiscent of the metabolic changes observed in tumor
development and, consequently, the metabolic reprogramming of certain viruses has
been linked to oncogenesis [2]. Virus species described to possess oncogenic potential
in humans include Epstein–Barr virus, Kaposi sarcoma-associated herpesvirus, human
papillomaviruses, hepatitis B and C viruses, human T lymphotropic virus, and Merkel
cell polyomavirus [3,4]. Furthermore, other polyomaviruses, such as simian virus 40
(SV40), as well as adenoviruses have been shown to be capable of transforming animal
and human cells [4–6]. One important class of host cell components utilized by viruses
are RNA-binding proteins (RBPs). These proteins accompany and regulate host as well as
viral RNAs through all stages of post-transcriptional gene regulation. Another important
class of molecules involved in regulating viral RNAs are microRNAs (miRNAs), small
non-coding RNAs that direct the post-transcriptional repression of mRNA targets [7].
Cellular miRNAs can exert anti- or proviral effects and they are often dysregulated upon
viral infections [8,9]. For example, miRNA-128 limits the replication and dissemination of
the human immunodeficiency virus type 1 (HIV-1), whereas miRNA-34 promotes HIV-1
pathogenesis by inducing the accelerated decay of host proteins influencing the HIV-1
life cycle [10,11]. Virus infections have also been shown to induce post-transcriptional
modifications on host genes’ transcripts. N6-adenosine methylation (m6A) is the most
prevalent internal modification found in eukaryotic mRNAs [12]. This modification affects
RNA structure and function and was shown to be altered on host genes upon viral infections.
On the other hand, viral RNAs are also subject to m6A modifications, leading to alterations
in virus production and infectivity. However, there seems to be no common regulation
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pattern and thus, increased methylation can enhance the production of certain viruses,
while it reduces the production rates of others [13–18].

IGF2BP1, also known as IMP-1, CRD-BP and VICKZ1, is an oncofetal RNA-binding
protein regulating tumor and stem cell fate [19–23]. Elevated IGF2BP1 expression has been
implicated in the development and progression of various cancers in, e.g., ovary, lung, pan-
creas, liver and breast and is typically associated with poor prognosis [24–29]. IGF2BP1’s
main function in cancer appears to be the protection of its mainly pro-oncogenic target
RNAs from miRNA-mediated degradation via binding to its four hnRNPK homology (KH)
domains [25,30–35]. Moreover, it was shown that m6A RNA modifications on IGF2BP1
target transcripts result in stronger RNA association and the consequently enforced expres-
sion of these pro-oncogenic factors [30,36,37]. By stabilizing the transcription factor E2F1-
and E2F-driven transcripts, IGF2BP1 promotes G1/S cell cycle transition [37]. Similarly, dis-
tinct tumorigenic viruses drive the expression of S-phase genes by enhancing E2F activity.
Papillomavirus E7 proteins, polyomavirus large T antigens and adenovirus E1A proteins
are all capable of binding host Rb proteins, leading to a de-repression of E2F transcription
factors and, thus, activating genes required for cell cycle progression [5,38–41].

The first report available on Pubmed regarding an interaction between IGF2BP1 and
the components of a virus was published in 2004. Lu et al. reported an association between
IGF2BP1 and the RNA genome of the hepatitis C virus [42]. Since then, associations
of IGF2BP1 or its vertebrate homologs and several virus species have been published.
These include viruses with double-stranded DNA genomes, such as hepatitis B virus and
papillomaviruses, single-stranded RNA viruses, such as hepatitis C virus, Zika virus, Ebola
virus and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as
retroviruses such as HIV-1 and murine leukemia virus (MLV). The respective associations
were reported to either impact RNA turnover or translation. In addition, protein–protein
interactions leading to the re-localization of viral proteins and altered virus production
have been reported. Moreover, virus-mediated epigenetic modifications have been shown
to alter RNA-binding activities between IGF2BP1 and its host mRNAs [43–49].

The oncofetal expression pattern of IGF2BP1 can be recapitulated from various public
data sources derived from RNA-sequencing experiments. Healthy tissues express barely
detectable amounts of IGF2BP1 mRNA, with only a few exceptions such as testis and
kidney (Figure S1A). In contrast, the IGF2BP1 mRNA levels are elevated in a multitude
of tumors, whereas the inter-sample variation is rather high (Figure S1B). Regarding cell
types, single-cell RNA-seq data reveal few specialized cell types, mainly embryonic or from
adult reproductive tissues as well as distinct cell types found in the kidney, expressing
considerable amounts of IGF2BP1 (Figures S1C and S5A). Thus, for leveraging IGF2BP1,
a virus either needs to infect cells expressing sufficient levels of this pro-oncogenic protein
or must enforce/induce its synthesis.

This review aimed to summarize the current knowledge about interactions between
IGF2BP1 and the components of different virus species and the consequences of these
interactions on virus production and infectivity. The study covers IGF2BP1–virus interac-
tions related to the oncogenic hepatitis B/C and human papillomaviruses as well as the
non-tumorigenic viruses HIV-1, SARS-CoV-2, Zika virus and Ebola virus and it briefly
summarizes reports regarding several non-human pathogenic viruses.

2. Materials and Methods

Statistical analyses were performed using R and images were created using the R-
package ggplot2 [50,51], if not stated otherwise. Network drawings were created using
Cytoscape [52]. Bulk RNA-seq data from the TCGA project were downloaded as files con-
taining FPKM values via the GDC data portal (https://portal.gdc.cancer.gov/repository).
The infection status of individual patient samples was extracted from supplementary ta-
bles of the accompanying reports. HBV/HCV: TCGA cohort LIHC, column “Hepatitis
B”/“Hepatitis C” [53]; HPV: TCGA cohort CESC, column “CLIN:HPV_status” [54]. Liquid
association coefficients were calculated using the R-package LiquidAssociation [55]. Sur-
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vival analyses were performed as logrank tests implemented in the R-package survival [56]
using the TCGA RNA-seq expression data of primary tumor samples. The CCLE bulk
RNA-seq data of cell lines were obtained from DepMap, downloaded via the R-package
ExperimentHub [57–59]. GTEx bulk RNA-seq data were obtained by downloading GTEx
v8 TPM level data from the GTEx portal (https://www.gtexportal.org/home/) [60].

For the analysis of bulk-RNA-seq data from individual projects, fastq files were
downloaded from NCBI GEO (https://www.ncbi.nlm.nih.gov/geo/). The quality of
the fastq files was assessed using FastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). If considerable amounts of remaining sequencing adapters or low-
quality read ends were detected, these were clipped off using Cutadapt [61]. Sequencing
reads were aligned to the human genome (UCSC hg38) using HiSat2 [62]. Alignments
in the obtained bam files were sorted, indexed and secondary alignments were filtered
out using samtools [63]. FeatureCounts [64] was used for summarizing the gene-mapped
reads. Ensembl (GRCh38.100 [65] was used as the annotation basis. Differential gene
expression was determined using the R package edgeR utilizing the trimmed mean of M-
values [66,67] normalization. A false discovery rate (FDR)-adjusted p-value below 0.05 was
considered the threshold for the determination of differential gene expression. Sequencing
reads not mapped to the human reference genome were subsequently mapped against the
respective virus genes/genomes using Hisat2. The following RefSeq sequences were used:
HCV—NC_004102.1; HPV16 E7—NC_001526:7604-7900; HPV18 E7—NC_001357.1:590-907;
SARS-CoV-2—NC_045512.2. Normalized expression values were obtained as fraction of
the reads mapped to the respective gene/genome of the library size multiplied by 1 × 106.

Single-cell RNA-seq data of CD4+ T cells were downloaded as R-object files along with
cell cluster information from PanglaoDB (https://panglaodb.se/). The R-package Seurat
V4 [68] was used for subsequent processing steps, including cell filtering (the minimum
number of expressed genes/cell: 100; maximum number of expressed genes/cell: 2000;
maximum percentage of mitochondrial gene expression/cell: 10) and count normalization
using the “LogNormalize” method and scaling factor 10,000.

3. Human Oncogenic Viruses
3.1. Hepatitis B Virus

Hepatitis B virus (HBV) is an enveloped DNA virus mainly infecting hepatocytes.
HBV infection can result in the integration of the viral genome into the host genome and
chronic infection is the main cause of liver cirrhosis and hepatocellular carcinoma (HCC)
worldwide [69–71]. HBV’s carcinogenic potential is thought to be facilitated by different
mechanisms such as mutagenesis due to the integration of viral DNA into host cancer
genes, the promotion of genomic instability either via the integration of viral DNA or
via the activity of certain viral proteins and due to the interference of normal cellular
functions by viral proteins [72]. The regulatory HBx protein promotes HBV transcription
as well as replication and contributes to the transformation of hepatocytes via multiple
mechanisms. HBx directly interacts with a multitude of cellular proteins involved in
proliferation, cell death, transcription and DNA repair [72]. One aspect of the HBx-mediated
promotion of tumor progression is via the activation of the proto-oncogenic transcription
factor c-Myc. While Li et al. described the induction of c-Myc expression via HBx by the
activation of Ras/Raf/ERK1/2 cascades, Yan et al. reported that the HBx protein promotes
tumor growth by facilitating c-Myc RNA stabilization via IGF2BP1 [49,73]. The latter
described an interaction between HBx and the DNA methyltransferase DNMT3A leading
to a hypermethylation of the promoter of the protein tyrosine phosphatase PTPN13, which,
in turn, leads to a reduced PTPN13 transcription. In combination with the finding that
PTPN13 directly interacts with the IGF2BP1 protein and that PTPN13 overexpression
impairs the binding between IGF2BP1 and the c-Myc transcripts, Yan et al. concluded that
PTPN13 protein competes with c-Myc RNA for IGF2BP1 association resulting in elevated
c-Myc mRNA decay. Thus, the epigenetic silencing of PTPN13 mediated by HBV’s HBx
protein enhances HCC proliferation by increasing c-MYC mRNA stability in an IGF2BP1-
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dependent manner [49]. In addition, Yan et al. described a dose-independent upregulation
of IGF2BP1 RNA and protein by HBx [49], whereas Wang et al. observed a downregulation
of let-7 miRNA family members by HBx [74]. Moreover, You et al. discovered that the
LIN28B promoter was activated by HBx via c-Myc [75]. Intriguingly, IGF2BP1 has been
shown to bind and thus stabilize LIN28B RNA and both, this stabilization and the activation
of LIN28B via c-Myc were shown to repress let-7 miRNAs [31,76]. Altogether, this points
to a regulatory network in which HBx, c-Myc, IGF2BP1 and LIN28B act synergistically to
suppress let-7 action or biogenesis. Thus, the expression of all these factors is promoted by
viral infection and fosters cell proliferation (Figure 1A).

The downregulation of PTPN13 in HCC upon HBV infection could be recapitulated
from TCGA HCC RNA-seq data [53]. However, the difference in RNA expression levels be-
tween patients with and without hepatitis B infection was rather moderate; however, there
was an obviously lower PTPN13 expression in primary tumors compared to normal tissues.
C-Myc expression was higher in HBV-positive HCC samples compared to non-infected
samples; however, generally elevated in normal tissue samples. IGF2BP1 expression was
significantly elevated in tumor samples and in both, tumor and non-tumor tissues, IGF2BP1
abundance appeared to be increased by HBV infection (Figure 1B).

Liquid association (LA), a technique to assess the degree of interference in an expres-
sion correlation between two genes by a third gene [77], indeed revealed a negative influ-
ence of the PTPN13 expression on the correlation between IGF2BP1 and c-Myc (negative
LA coefficient) in HCC-derived, HBV-positive cell lines. This was further supported by a
very strong Pearson correlation between IGF2BP1 and c-Myc in the cell lines showing a low
PTPN13 RNA expression compared to cell lines with higher PTPN13 expression (cell lines
separated by median PTPN13 RNA expression; Figure 1C). However, although negative
LA coefficients were also observed in HBV-positive HCC-patient samples, the non-tumor
tissues of HBV-infected patients as well as tumor samples from non-infected patients
showed a positive LA coefficient, suggesting that the interference of PTPN13 on the bind-
ing between the IGF2BP1 protein and c-Myc RNA is not only dependent on the expression
levels of PTPN13, but also involves additional, difficult to identify, regulatory constraints
(Figure 1D). The hypothesis that PTPN13 binding to IGF2BP1 competes with c-Myc binding
leads to the tempting speculation that the binding of PTPN13 to IGF2BP1 reduces the
interaction between IGF2BP1 and other target transcripts as well. To test this hypothesis,
the LA coefficients of IGF2BP1 and a set of 117 published target candidates in dependence
of PTPN13 were calculated. The criteria for selecting genes as target candidates comprised
a consistent downregulation upon IGF2BP1 knockdown in several cancer-derived cell lines,
a positive expression correlation with IGF2BP1 in tumors as well as reported IGF2BP1 bind-
ing sites [35]. Positive as well as negative LA coefficients were obtained for distinct target
candidates; however, in general, LA coefficients were lowest in the HBV positive tumor
samples (Figure 1E). Thus, PTPN13 might indeed interfere with the binding of IGF2BP1
and some of its targets; however, further investigations are required. Patient survival in
HCC tends to be negatively associated with IGF2BP1 levels, but an additional influence
of HBV on survival probabilities could not be conclusively assessed from TCGA data.
The HBV-positive cohort was rather small (n = 20), the logrank test derived p-value was not
significant and the Kaplan–Meier curves crossed, thus, allowing only rather unassertive
conclusions (Figure S2A,C).
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Figure 1. Interaction between HBV and IGF2BP1. (A) Scheme depicting the published interactions
between HBV’s HBx protein and host cell components, cf. [31,49,74–76]. Solid line—direct interaction;
dashed line—indirect interaction. (B) Distribution of RNA expression values of PTPN13, c-Myc
and IGF2BP1 derived from HCC-RNA-seq samples (TCGA, cohort LIHC). (C) IGF2BP1 and c-Myc
RNA expression in RNA-seq samples of HCC cell lines (data derived from CCLE data accessed via
DepMap [57,58]; HBV-positivity was assessed from Expasy Cellosaurus [78]). (D) Liquid association
(LA) coefficients of the correlation between IGF2BP1 and c-Myc in dependence of PTPN13 in TCGA
HCC samples. (E) LA coefficient distributions of the correlation between IGF2BP1 and 117 published
target candidates in dependence of PTPN13 in TCGA HCC samples. no HV—samples without
detected hepatitis virus infection; HBV—samples with exclusively detected hepatitis B infection;
NT—normal tissue; and PT—primary tumor tissue.

3.2. Hepatitis C Virus

The hepatitis C virus (HCV) is the main causative agent of non-A and non-B hepati-
tis [45] and besides HBV, constitutes another major risk factor for the development of liver
cirrhosis and hepatocellular carcinoma [71,79,80]. The primary target cells of the virus are
hepatocytes [81].

The positive-strand RNA genome of HVC contains an internal ribosomal entry site
(IRES) in its 5’ untranslated region (5’UTR), facilitating cap-independent translation via
the direct recruitment of the 40S ribosomal subunit and the eukaryotic initiation factor 3
(eIF3) [82,83].

In 2004, Lu et al. identified IGF2BP1 (CRDBP) as well as its paralogs IGF2BP2 and
IGF2BP3 as HCV IRES-interacting proteins [42]. The binding of IGF2BP1 to the HCV-
IRES was confirmed by Weinlich et al. in 2009. Furthermore, these authors found that
IGF2BP1 can also bind to the HCV 3′UTR in vitro and that IGF2BP1 knockdown in HCC-
derived Huh-7 cells leads to strongly decreased HCV IRES-mediated translation rates
that were even further reduced in the absence of the HCV 3′UTR. However, the stability
of the used reporter mRNAs was not reduced upon IGF2BP1 knockdown. Consistently,
the addition of IGF2BP1 to translation competent extracts of primary rat hepatocytes
increased the translation rates of an HCV reporter mRNA containing the HCV 5′ and
3′UTRs. In addition, a more than two-fold increase in the IGF2BP1 protein level was
observed in Huh-7 cells, expressing an HCV replicon containing the nonstructural proteins
NS3, NS4A, NS4B, NS5A and NS5B [45]. Moreover, Cheng et al. reported the anti-HCV
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activity of the let-7 miRNA family, as well as the negative regulation of IGF2BP1 expression
by these miRNAs [84], providing further support for a regulatory role of an IGF2BP1-let-7
antagonism [31,85]. Figure 2A depicts the relationships between the HCV genome, IGF2BP1
and let-7 miRNAs. Another aspect of IGF2BP1 binding to the HCV RNA was reported by
Li et al. They reported a competition in binding to the 5′ end of the HCV RNA between
IGF2BP1 and miR-122, a liver-specific miRNA reported to promote HCV replication and
translation [86–89]. After siRNA-mediated IGF2BP1-knockdown in Huh7.5 cells expressing
HCV genomic RNA, significant reductions were observed in both HCV replication as well
as HCC cell proliferation [86]. Bradrick et al. confirmed the binding of IGF2BP1 in the
region of the miR-122 binding sites and, furthermore, found that the binding of IGF2BP1
was compromised by the deletion of the miR-122 binding sites; however, point mutations in
these sites had no apparent effect on IGF2BP1 binding, suggesting the miR-122 independent
binding of IGF2BP1 [89].

While there was no obvious difference in IGF2BP1 RNA expression in the TCGA HCC
samples with and without detected HCV infection (Figure S3A), a positive correlation
between IGF2BP1 RNA expression and the RNA levels of HCV can be seen in publicly
available RNA-seq samples of HCV-infected Huh7.5.1 cells (Figure 2B, the data for which
were obtained from [90]). Moreover, IGF2BP1 expression levels reached a moderate yet
significant elevation after 8 days of infection in these cells (Figure 2C). Although not
significant, survival analyses in the TCGA HCC cohort indicated a strong negative impact
of IGF2BP1 expression on patients’ overall survival (Figure S2B).
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Figure 2. Interaction between HCV and IGF2BP1. (A) Scheme depicting the published interac-
tions between the HCV genomic RNA and the host cell components, cf. [31,42,45,84,85]. Solid
line—direct interaction, dashed line—indirect interaction. (B) Expression levels of IGF2BP1 and HCV
RNA in Huh7.5.1 cells infected with HCV (data derived from [90]). (C) IGF2BP1 fold changes in
HCV-infected Huh7.5.1 cells compared to uninfected cells (data derived from [90]). n.s.: FDR adjusted
p-value ≥ 0.05, ***: FDR adjusted p-value < 0.001

3.3. Human Papillomavirus

Human papillomaviruses (HPVs) are a diverse set of more than 200 types of dsDNA
viruses. They comprise five evolutionary groups (Alpha, Beta, Gamma, Mu, Nu) of
which the Alpha group contains members causing rather harmless warts, but also the
so-called high-risk (HR-) HPVs that are associated with several cancer types, including
cervical cancer, several other anogenital cancers, as well as head and neck, lung and breast
cancer [91–94]. Almost 100% of cervical cancers are attributable to HR-HPVs with HPV16
and 18 accounting for 71% of cases worldwide [95] and in total are estimated to cause
more than 5% of all human cancers [96]. Nonetheless, cancer progression is a rather rare
event following persistent HPV infection [97]. Notably, several studies have shown that
HPV infection in head and neck cancers is associated with a better prognosis [98–101].
Cancer progression upon HR-HPV infection is caused by the increased expression of the
viral oncoproteins E6 and E7 that activate the cell cycle, inhibit apoptosis, and allow for
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the accumulation of DNA damage [97]. HPV16 E7 can bind members of the well-known
tumor suppressor and cell cycle regulatory retinoblastoma protein family (Rb), leading
to the degradation of these proteins [38–40]. The binding/degradation of Rb releases
and activates E2F transcription factors that drive the expression of S-phase genes [102].
Furthermore, E7 can directly bind and activate E2F1 in an Rb-independent manner [103].
HPV E6 protein complements the actions of E7 by targeting p53 for degradation and thus,
preventing cell growth inhibition [102].

Similar to HPVs’ E7, IGF2BP1 supports E2F1 activity, albeit via different mechanisms.
Müller et al. could show that IGF2BP1 promotes G1/S cell cycle transition by stabilizing
mRNAs encoding positive regulators of this checkpoint including E2F1 and E2F-driven
transcripts [37]. Wang et al. reported the m6A-dependent binding of HPV16 E7 mRNA by
IGF2BP1, leading to a stabilization and, thus, increased the expression of this RNA in HPV16
positive cell lines. Moreover, this E7-IGF2BP1 complex was shown to be vulnerable to heat
stress, since exposing cells to moderate heat led to a decrease in E7 as well as IGF2BP1 and to
an upregulation of Rb, p53 and p21 proteins. In consequence, heat treatment was shown to
reduce the proliferation and migration in HPV16-positive cells and reduced tumor growth
in cell line-based xenograft mouse models [43]. Figure 3A depicts the described relations
between E7 and IGF2BP1. Interestingly, besides the downregulation of p53 and Rb in HPV-
positive lung cancer tissues, Hussen et al. observed a downregulation of PTPN13 and let-7
miRNAs [104]. Thus, it is tempting to speculate that regulatory circuits involving PTPN13,
let-7 miRNAs, c-Myc and IGF2BP1 are also relevant in the HPV-associated malignancies (cf.
Section 3.1). Regarding patient prognosis, Laban et al. observed a significant association
between IGF2BP1 (IMP-1) antibody response and the shorter overall survival of patients
with HPV-positive head and neck squamous cell carcinomas (HNSCC), which was not seen
in HPV-negative patients [105].

A strong positive correlation between HPV E7 and IGF2BP1 RNA could be recapit-
ulated from RNA-seq data in a panel (n = 10) of different cervical squamous carcinoma-
derived cell lines expressing either HPV16 (CaSki, n = 4; SiHa, n = 3) or HPV18 (HeLa,
n = 3) proteins (data derived from [106], Figure 3B). Furthermore, a slightly elevated, yet
not significant, expression of IGF2BP1 RNA was observed in HPV-positive cervical cancer
samples deposited by the TCGA (median FPKM = 0.08), and compared to HPV-negative
samples (median FPKM = 0.03, Figure 3C). Considering the complete cervical cancer co-
hort, IGF2BP1 failed to yield conclusive results in terms of survival probability. However,
HPV status remained unknown for many of these samples (Figure S4A). Considering only
HPV-positive samples indicated a strong, yet not significant trend that IGF2BP1 is associ-
ated with reduced survival, whereas studies in the few HPV-negative samples remained
non-conclusive (Figure S4B,C).
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4. Human Non-Oncogenic Viruses
4.1. Human Immunodeficiency Virus Type 1

The human immunodeficiency virus type 1 (HIV-1) is the causative agent of the
acquired immunodeficiency syndrome (AIDS). HIV-1 can infect CD4+ T cells, macrophages
and dendritic cells [107]. The major structural component of HIV virions is the Gag protein.
This protein is essential for virus assembly and release. It is further involved in membrane
binding, the incorporation of the viral genome and Env proteins into the virions as well as
in budding and release [108].

Zhou et al. discovered an association between IGF2BP1 and the HIV-1 Gag protein.
The binding between the two proteins was shown to be primarily facilitated by IGF2BP1’s
KH3 and KH4 domains and a zinc finger motif in the Gag nucleocapsid (NC) domain [47].
KH domain-dependent IGF2BP1-Gag binding was confirmed by Milev et al. [109]. Fur-
thermore, IGF2BP1 expression was shown to inhibit the production of virus particles;
however, effective inhibition relied on the presence of all IGF2BP1 domains. Moreover,
Zhou et al. observed the incorporation of IGF2BP1 into virus particles and that the infectiv-
ity of virions produced in IGF2BP1 overexpressing cells was reduced in a primarily KH
domain-dependent manner [47]. In a following work, Zhou et al. found that IGF2BP1 also
interacts with HIV-1’s regulatory Rev protein [48]. The Rev protein binds and mediates the
cytoplasmic transport of late-phase partially spliced viral RNAs as well as the unspliced
whole RNA genome that is packaged into the budding virions [110]. The association
between Rev and IGF2BP1 resulted in a re-localization of a substantial amount of Rev
from nucleoli to the cytoplasm where it co-localized with IGF2BP1. This re-localization
resulted in a disturbed ratio of the (multiply) spliced and unspliced viral RNAs found in
the cytoplasm [48]. In addition, Zhou et al. infected a CD4+ T cell line (SupT1), ectopically
expressing FLAG-IGF2BP1, with wild-type HIV-1, and observed a reduced production of
the virus. Interestingly, although the authors could confirm the inhibitory role of IGF2BP1
on HIV-1 virus production, they also found that IGF2BP2 showed an even stronger effect
on HIV-1 inhibition, whereas IGF2BP3 did not exert an effect on infectivity [48]. For the
interaction studies, Gag and Rev were transfected into non-hematopoietic cells (HEK293T
and HeLa) and the T cell line used for investigating the effect of IGF2BP1 on virus pro-
duction was engineered to ectopically produce the protein, raising the question about the
physiological relevance of the interactions between IGF2BP1 and HIV-1.

Single-cell RNA-seq data of primary CD4+ T cells either uninfected or infected with
HIV-1 indicate barely any expression of IGF2BP1 and its paralogs (Figure 4A). Bulk RNA-
seq data of blood cells, obtained from the GTEx project [60], accordingly, show a very
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low RNA expression of IGF2BP1. Furthermore, an upregulation of IGF2BP1 in leukemia,
as frequently observed in other cancer types, cannot be seen in the TCGA acute myeloid
leukemia cohort RNA-seq data. However, although the IGF2BP2 expression was also
barely detected in single T cells, a moderate to high expression of IGF2BP2 mRNA was
observed in the blood bulk RNA-seq and leukemia dataset, suggesting that the reported
inhibitory effect of the IGF2BP proteins on HIV in T cells might be more relevant for
IGF2BP2 (Figure 4B,C). According to single-cell RNA-seq data provided by the human
protein atlas [111], a macrophage population found in the kidney shows moderate IGF2BP1
expression. In addition, this macrophage subpopulation was also positive for CD4, CXCR4
as well as CCR5, i.e., the receptors utilized by HIV-1 to enter the cells. However, these
macrophages also express IGF2BP2 at even higher levels (Figure S5A,B). Thus, such kidney-
residing macrophages might indeed be susceptible for an interplay between IGF2BP1/2
and HIV-1; however, this needs further investigation.
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Figure 4. IGF2BP RNA expression in blood cells and leukemia. (A) Fraction of CD4+ T cells unin-
fected or infected with HIV-1 with detectable RNA expression (normalized read counts > 0) of the
indicated proteins (data derived from single-cell RNA-seq; SRA accession: SRP134859). (B) RNA
expression levels of the human IGF2BP proteins in bulk RNA-seq data of blood cells (data derived
from GTEx [60]). (C) RNA expression levels of the human IGF2BP proteins in the bulk RNA-seq data
of peripheral blood cells from acute myeloid leukemia patients (data derived from the TCGA LAML
cohort [112]).

4.2. Severe Acute Respiratory Syndrome Coronavirus 2

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded
RNA virus, causing the coronavirus disease 19 (COVID-19) that became a worldwide pan-
demic in 2020. In most cases, SARS-CoV-2 infection causes mild cold symptoms; however,
a significant proportion of patients develop severe symptoms, including acute respiratory
distress (ARDS), pneumonia, renal failure, cardiac complications and even multi-organ
failure. Furthermore, reports about persistent symptoms that may last for several months
following an acute SARS-CoV-2 infection, designated as post-COVID syndrome, are ac-
cumulating [113–115]. The structural spike (S) protein of SARS-CoV-2 is equipped with a
receptor-binding domain (RBD) mediating direct contact with the angiotensin-converting
enzyme 2 (ACE2) receptor of susceptible host cells. However, for viral entry, the spike
protein has to be primed by host cell proteases TMPRSS2 or cathepsin B/L [116]. Since
SARS-CoV-2 enters the body via the respiratory tract, airway and alveolar epithelial cells
as well as vascular endothelial cells and alveolar macrophages belong to the first targets of
viral entry. However, cells from multiple extra-pulmonary tissues also express ACE2 and
TMPRSS2 and thus represent possible target cells for SARS-CoV-2 [114,117,118].

Zhang et al. observed a stimulation of IGF2BP1 RNA expression upon SARS-CoV-2
infection in cell lines and patient lung samples. In addition, they found that the knockdown
as well as knockout of IGF2BP1 in different cell lines led to reduced levels of viral RNA
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in these cells after infection with SARS-CoV-2. Importantly, IGF2BP1 was shown to bind
and stabilize a subgenomic RNA encoding the SARS-CoV-2 S protein in vitro and thus,
promoting S protein translation [44].

The inspection of two independent publicly available bulk RNA-seq datasets of
SARS-CoV-2 infected colon adenocarcinoma derived Caco-2 and primary human bronchial
epithelial cells (HBECs), respectively, led to inconclusive results. Considerable amounts of
SARS-CoV-2 genomic RNA were detectable upon the infection in both cell lines; however,
the observed amounts varied tremendously. Around 30% of all sequencing reads obtained
from the Caco-2 cells were mapped to the SARS-CoV-2 genome at 7, 12 and 24 h after infec-
tion. In contrast, less than 1% of sequencing reads could be mapped to the virus genome in
infected HBEC samples. IGF2BP1 RNA levels also varied by about three orders of magni-
tude between the two cell lines. The normalized expression values of IGF2BP1 transcripts
and SARS-CoV-2 genomic RNA exhibited negative, yet not significant, Pearson correlation
in infected cells from both cell lines (Figure 5A,D). Nonetheless, IGF2BP1 RNA levels
tended to increase over time in infected cells, whereas the levels of SARS-CoV-2 genomic
RNA started to decrease in Caco-2 cells between 12 and 24 h after infection, while they
continued to increase in HBECs until the final measurements (96 h, Figure 5B,E). Compared
to mock-infected (Caco-2)/uninfected (HBECs) cells, IGF2BP1 levels started to increase
in both cell lines and reached almost four-fold higher levels (log2 fold change = 1.89) 48 h
after infection in the HBECs. However, this increase was not significant (FDR adjusted
p-value = 1), due to high variation in the expression in the biological replicates. Despite
IGF2BP1 levels continuing to rise in infected cells, the rise in the expression of IGF2BP1
compared to uninfected HBEC cells was attenuated, since IGF2BP1 levels also increased
in the uninfected cells (Figure 5C,F). However, IGF2BP1 RNA expression levels in the
HBECs in total were rather low and, thus, detected differences might be unreliable and
the consequence of data noise. Considering cell-type-specific RNA expression obtained
from human protein atlas single-cell RNA-seq data, human kidney cells displayed salient
co-expression patterns. Distinct sub-populations of proximal tubular cells express at least
moderate levels of IGF2BP1 as well as ACE2, TMPRSS2 and cathepsin-B (CTSB) RNA
(Figure S5A,C). Thus, due to a basal expression of IGF2BP1 in healthy human kidneys,
they could potentially be organs vulnerable for infection by SARS-CoV-2 that might be
intensified by IGF2BP1. However, further investigations are required. Moreover, it needs
to be addressed if SARS-CoV-2 infections could lead to IGF2BP1 de novo synthesis, which
might explain the observed elevated levels in patient lung samples.

4.3. Other Human Viruses

Besides SARS-CoV-2, Zhang et al. observed binding between IGF2BP1 and two
other RNA viruses, namely Zika virus (ZIKV) and Ebola virus (EBOV) [44]. Similarly to
SARS-CoV-2, the authors found a significant reduction in viral ZIKV RNA levels in infected
cells upon IGF2BP1 knockdown and knockout. However, in contrast to SARS-CoV-2, they
did not observe significant differences in the degradation rates of the ZIKV genomic RNA
upon IGF2BP1 knockout; thus, they concluded that there was no stabilization effect, despite
the fact that they observed that IGF2BP1 also promoted the translation of this virus [44].
The binding of IGF2BP1 to EBOV RNA was shown by Zhang et al. and Fang et al. However,
while Zhang et al. did not observe an impact of IGF2BP1 knockdown on EBOV RNA levels,
Fang et al. reported a significant reduction in infection rates after knocking down IGF2BP1
independently with two out of three used siRNAs [44,120].
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Figure 5. IGF2BP1 RNA expression in SARS-CoV-2-infected cells. Upper row: SARS-CoV-2-infected
Caco-2 cells (data derived from GEO series GSE217504), lower row: SARS-CoV-2-infected primary
human bronchial epithelial cells (HBECs, data derived from [119]). (A,D) RNA expression levels
of IGF2BP1 and the SARS-CoV-2 genome in SARS-CoV-2-infected cells. (B,E) Time-point-averaged
RNA expression levels of IGF2BP1 and the SARS-CoV-2 genome at the indicated time after infec-
tion. (C,F) IGF2BP1 fold changes in SARS-CoV-2 infected cells compared to mock-infected (Caco-
2)/uninfected (HBECs) cells. n.s.: FDR adjusted p-value ≥ 0.05.

5. Non-Human Viruses

Besides the above-reported human-pathogenic viruses, IGF2BP1 homologs were re-
ported to promote the viral spread of several viruses infecting other animals.

Chen et al. reported the direct binding of IGF2BP1 to the 3′UTR of Duck hepatitis
A virus type 1 (DHV-1/DHAV), a highly fatal, rapidly spreading virus infecting young
ducklings [121], which led to the increased IRES-mediated translation efficiency of viral
proteins in a duck embryo epithelial cell line. Furthermore, they reported that the presence
of DHV-1 proteins in the cytoplasm of the duck embryo epithelial cell line led to increased
IGF2BP1 protein levels [46]. The nonstructural p17 protein of the avian reovirus (ARV),
another important poultry pathogen, was shown to interact with IGF2BP1 and the over-
expression of IGF2BP1 in chicken cells was associated with an increase in viral replication.
Furthermore, the mRNA levels of IGF2BP1 were increased upon ARV infection in chicken
cells [122]. Another poultry-infecting virus with a reported connection to IGF2BP1 is the
Marek’s disease virus (MDV), a highly contagious herpesvirus capable of inducing T-cell
lymphomas in chicken [123]. IGF2BP1 expression was found to be increased in a chicken
inbred line, highly susceptible to MDV, whereas, in a MDV-resistant cell line, IGF2BP1
RNA expression was hardly detectable. The difference in RNA expression was concordant
with the increased activating histone methylation marks (H3K4me3) around the IGF2BP1
transcription start site found in the MDV susceptible chicken samples. Upon MDV infection,
IGF2BP1 expression was significantly reduced in thymus cells of these animals [124].
However, it remained open, if the elevated IGF2BP1 expression was connected to higher
susceptibility to the virus. Mai and Gao observed an IGF2BP1-dependent increase in the
production of infectious murine leukemia virus (MLV) vectors, a retroviral vector system
widely used for gene transfer. By binding and stabilizing the viral genomic RNA, IGF2BP1
increased its incorporation into virions. However, for the wild-type virus, only a modest
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effect was measured, since, although still increasing the incorporation of genomic RNA,
IGF2BP1 showed an inhibitory effect on the production of viral proteins [125]. Similarly
to HIV-1, IGF2BP1 protein was found to also be incorporated into the virion particles of
this retrovirus [47,125]. Jefferson et al. identified IGF2BP1 as a binding partner of the
N-terminal protease Npro of the classical swine fever virus (CSFV)/Pestivirus C by the GST
pulldown assay and subsequent mass spectrometry. Since the number of detected peptides
was increased in the presence of zinc, the authors concluded that the binding involved the
interaction with the TRASH motif contained in the interaction domain of Npro [126].

6. Discussion

The RNA-binding protein IGF2BP1 has been reported to interact with RNA and pro-
teins from a variety of viruses from different families, such as Hepadnaviridae (HBV),
Flaviviridae (HCV, ZIKV, CSFV), Papillomaviridae (HPV), Retroviridae (HIV-1, MLV),
Coronaviridae (SARS-CoV-2), Filoviridae (EBOV), Picornaviridae (DHV-1), Reoviridae
(ARV) and Herpesviridae (MDV). Associations with IGF2BP1 include the binding of viral
transcripts leading to their stabilization (HPV, SARS-CoV2, MLV; [43,44,125]), but also
stability-independent enhanced translation (HCV, DHV-1; [45,46]). Furthermore, the bind-
ing of IGF2BP1 to viral proteins led to alterations in virus production, infectivity, or
replication (HIV-1, ARV; [47,122]). Binding to IGF2BP1 usually results in proviral ef-
fects [43–46,49,86,120,122,126]. Only the binding to proteins of HIV-1 was reported to
reduce virus production and infectivity [47,48]. Besides the putative influence on the natu-
ral infection process, an inhibitory effect of IGF2BP1 on HIV-1 production, facilitated by
binding to Gag and Rev proteins, might also impact research and gene therapy approaches
using lentiviral vectors comprising HIV-derived genes. Regarding the extent of reported
virus families, the diversity of utilized molecular mechanisms and IGF2BP1’s function
in promoting cell proliferation, it seems likely that even more virus species benefit from
elevated IGF2BP1 expression. However, since IGF2BP1 is an oncofetal protein [19–23], ques-
tions about the physiological relevance of the reported interactions between IGF2BP1 and
non-tumor viruses, primarily investigated in tumor-derived or embryonic cell lines, needs
to be addressed by further analyses. Remarkably, however, upon infection with HBV, HCV,
SARS-CoV-2, DHV-1 and ARV, increasing levels of IGF2BP1 RNA and/or protein have
been observed [44–46,49,122]. This leads to the unsettling conclusion that infection with
these, in part so far, not described as tumor-promoting viruses, might drive the expression
of a protein that is known to be involved in the development and progression of multiple
types of tumors [24–29]. The underlying mechanisms leading to the enhanced IGF2BP1
expression were not investigated and, thus, still need to be elaborated. On the other hand,
as for cancer, the oncofetal expression pattern of IGF2BP1 could be exploited for developing
novel anti-viral therapies, since the depletion/inactivation of this protein in adult tissues
should have only little effects on normal cellular physiology. For example, the opposing
functions of IGF2BP1 and miRNAs of the let-7 family on the spreading of viruses such as
HBV, HCV and HPV might be utilized, e.g., by enhancing let-7 expression. Interferon alpha
and Interleukin-28B treatment have been shown to increase cellular let-7 levels, decrease
the IGF2BP1 expression and exert an anti-HCV effect [84]. Furthermore, small molecule
inhibitors of IGF2BP1 function, including BTYNB or Cucurbitacin B, that have recently
shown promising anti-tumor effects [37,127,128], should be tested for their impact on the
production and infectivity of the virus species reported to benefit from IGF2BP1 expression.

In conclusion, IGF2BP1 can be recruited by a variety of viruses from distinct families
to promote their spreading, and thus, anti-tumor strategies aiming to inhibit the expression
or function of IGF2BP1 should be tested for anti-viral effects as well. Table 1 briefly
summarizes the effects that IGF2BP1 exerts on the components of the described viruses as
well as the impact of these viruses on IGF2BP1.
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Table 1. Effects of IGF2BP1–virus interactions.

Virus Impact of IGF2BP1 on Virus Impact of Virus on IGF2BP1

HBV Binding to c-Myc mRNA ↑ [49]
RNA/protein expression ↑ [49]

HCV Translation ↑ [45] Protein expression ↑ [45]
Replication ↑ [86]

HPV Stability of E7 RNA ↑ [43] Heat stability ↓ [43]
HIV-1 Virus production↓ [47,48]

Infectivity ↓ [47,48]
SARS-CoV-2 RNA levels ↑ [44] RNA expression ↑ [44]

Stability of S RNA ↑ [44]
ZIKV RNA levels ↑ [44]
EBOV Infectivity ↑ [120]
DHV-1 Translation ↑ [46] Protein expression ↑ [46]
ARV Replication ↑ [122] RNA expression ↑ [122]
MDV RNA expression ↓ [124]
MLV stability of genomic RNA ↑ [125]

Protein levels ↓ [125]

7. Future Directions

Despite only few studies dedicated to IGF2BP1–virus cross-talk, the broad range of
virus families covered by these reports suggests a widespread role of IGF2BP1 in viral
infection and the impact of viruses on IGF2BPs, especially in cancer. Recently developed
data repositories, such as NCBI’s sequence read archive (SRA, https://www.ncbi.nlm.
nih.gov/sra) or the European nucleotide archive (ENA, https://www.ebi.ac.uk/ena/),
provide tremendous amounts of publicly available high-throughput sequencing data that
could be a promising starting point for the discovery of new IGF2BP–virus interactions.
The examination of appropriate RNA-seq datasets, provided by these repositories, could
deliver new insights about the presence of viruses, e.g., in cancerous tissues but also about
changes in IGF2BP expression upon virus infection. Correlations between IGF2BP1 or its
paralogs and viral RNAs, derived from these studies, can be used to hypothesize about pu-
tative direct interactions and indirect cross-talk impacting the viral life cycle. Furthermore,
CLIP-seq (cross-linking and immunoprecipitation) datasets could provide valuable infor-
mation about viral RNAs bound to IGF2BPs. Additionally, binding motifs derived from
these datasets can be used to scan viral genomes for the occurrences of putative IGF2BP
binding sites. Indirect interactions such as the downregulation of PTPN13 by viral proteins
leading to an IGF2BP1-dependent upregulation of c-Myc should also be further exploited.
While investigated in detail for HBV [49], Hussen et al. described a reduction in PTPN13
levels upon HPV infection; however, they did not provide a mechanistic explanation [104].
Moreover, we observed a downregulation of PTPN13 as well as a negative influence on
the association between IGF2BP1 and c-Myc in HCV-infected TCGA HCC samples—both
effects were stronger pronounced than in HBV-positive samples (Figure S3). Thus, further
investigations regarding interactions between viruses, IGF2BP1, PTPN13 and c-Myc levels
are pending. Respective studies could reveal potential therapeutic options, especially in
HCV/HPV-associated cancers. Recent reports provide strong evidence that RBP–RNA
interactions are per se druggable and disrupting these interactions may provide benefits
for viral infection-associated cancerous diseases [129].

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ebi.ac.uk/ena/
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//www.mdpi.com/article/10.3390/v15071431/s1, Figure S1: IGF2BP1 RNA expression; Figure
S2: Kaplan-Meier curves describing overall survival probabilities depending on IGF2BP1 RNA
expression in hepatocarcinoma derived RNA-seq data, provided by the TCGA (cohort LIHC); Figure
S3: RNA expression and liquid association in in hepatocarcinoma derived RNA-seq data (HCC);
Figure S4: Kaplan-Meier curves describing overall survival probabilities depending on IGF2BP1
RNA expression in cervical carcinoma derived RNA-seq data, provided by the TCGA (cohort CESC);
Figure S5: Average RNA expression in distinct kidney resided cell types derived from single cell
RNA-seq data provided by the Human protein atlas (www.proteinatlas.org).
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