BRIEF REPORT

Impact of imprinted immunity induced by mrna vaccination in an experimental animal model

Shigeru Fujita1,2, Keiya Uriu1,2, Lin Pan1,3, Naganori Nao4,5, Koshiro Tabata⁶ , Mai $\bold{Kishimoto}^6, \bold{Yukari Itakura}^6, \bold{Hirofumi Sawa}^{4,5,6,7,8}, \bold{Izumi Kida}^9, \bold{Tomokazu Tamura}^{10}, \bold{The}^{10}$ **Genotype to Phenotype Japan (G2P-Japan) Consortium, Takasuke Fukuhara10,11,12 , Jumpei Ito¹ , Keita Matsuno5,7,8,9 *#, Kei Sato1,2,3,13,14,15,16*#**

¹Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; ²Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; ³Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan; ⁴Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; ⁵One Health Research Center, Hokkaido University, Sapporo, Japan; ⁶Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; ⁷Institute for Vaccine Research and Development: HU-IVReD, Hokkaido University, Sapporo, Japan; ⁸International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo Hokkaido 0010020, Japan.; ⁹Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; ¹⁰Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.; ¹¹AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan; ¹²Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; ¹³International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; ¹⁴International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; ¹⁵Collaboration Unit for Infection, **Impact of imprinted immunity induced by mrna vaccination**

in an experimental animal model

Shigern Fujita¹², Kelya Uriu¹², Lin Pan¹³, Naganori Nao⁴⁵, Koshiro Tabata⁶, Mai

Kishimoto⁶, Yukari Itakura⁶, Hiro

 $\overline{}$, and the contract of the contrac

[#] Keita Matsuno and Kei Sato contributed equally to this study. *Correspondence: KeiSato@g.ecc.u-tokyo.ac.jp (Kei Sato)

[©] The Author(s) 2023. Published by Oxford University Press on behalf of Infectious Diseases Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan; ¹⁶CREST, Japan Science and Technology Agency, Kawaguchi, Japan

The emergence of SARS-CoV-2 Omicron variants has led to concerns that ancestral SARS-CoV-2-based vaccines may not be effective against newly emerging Omicron subvariants. The concept of "imprinted immunity" suggests that individuals vaccinated with ancestral virus-based vaccines may not develop effective immunity against newly emerging Omicron subvariants, such as BQ.1.1 and XBB.1. Here, we investigated this possibility using hamsters. While natural infection induced effective antiviral immunity, breakthrough infections in hamsters with BQ.1.1 and XBB.1 Omicron subvariants after receiving the 3-dose mRNA-LNP vaccine resulted in only faintly induced humoral immunity, supporting the possibility of imprinted immunity.

Keywords: SARS-CoV-2, imprinted immunity, mRNA vaccine, Omicron

INTRODUCTION/BACKGROUND

The COVID-19 pandemic has led to a global vaccination effort to protect against severe COVID-19 and further to possibly prevent SARS-CoV-2 infections. First-generation COVID-19 vaccines were developed based on the spike protein of the now-ancestral Wuhan-Hu-1 strain of SARS-CoV-2 (i.e., monovalent vaccines) [1]. As of June 13, 2023, 70.1% of the world population has received at least one dose of COVID-19 vaccine [2].

During the COVID-19 pandemic, a variety of SARS-CoV-2 variants with multiple mutations particularly in the spike gene have emerged. The B.1.1 strain, which harbors the D614G substitution in the spike protein, predominantly spread worldwide in 2020 [3]. Subsequently, variants such as Alpha, Beta, Gamma, Delta, and Omicron (B.1.529 and BA lineages) emerged and spread around the world $\overline{[4]}$. The Omicron variant has greatly diversified, and various Omicron subvariants, such as BA.2, BA.5, BQ.1.1, XBB.1, and XBB.1.5, have emerged one after another. Importantly, these subvariants have acquired greater immune escape ability than the ancestral B.1.1 strain and former variants [5-8]. The emergence of highly immune-evasive Omicron variants led to the development of bivalent vaccines (i.e., a combination of ancestral virus-based and Omicron BA.1 or BA.4/5 based vaccines) to boost the immunity against newly emerging Omicron subvariants [9]. Nevertheless, booster shots with these bivalent vaccines tend to induce neutralizing antibodies (NAbs) against the ancestral SARS-CoV-2 strain rather than those against newer Omicron subvariants of concern [10]. Similarly, breakthrough infection (i.e., natural infection after vaccination) of Omicron subvariants more strongly induces antiviral humoral immunity against the ancestral SARS-CoV-2 strain than the Omicron subvariant naturally infected [8]. These observations raise a possible concept called "imprinted immunity"—prior exposure to a primary antigen (e.g., ancestral SARS-CoV-2 in this case) can attenuate the induction magnitude of immunity against certain secondary antigens (e.g., Omicron subvariants) [9, 11-13]. However, to date, the immunological background of humans against concept of "imprinud immunity" suggests that individuals vaceinated with ancestral vignis-based
vaceines may not develop effective immunity against newly emerging Omicon subvariants with a star-
action induced effective mi SARS-CoV-2 has been highly diversified, because the vaccination status, history of natural infection, the SARS-CoV-2 variant infected, and the time after vaccination/natural infection in individuals vary significantly. Moreover, since most people have been vaccinated, the comparison of immune status between vaccinated and unvaccinated individuals after natural infection of certain SARS-CoV-2 variants of concern is challenging. Therefore, directly addressing the possibility of imprinting immunity by vaccination using human samples is technically difficult. In this study, we use an experimental hamster model to address the possibility of imprinting immunity by vaccination.

METHODS

Ethics statement

All experiments with hamsters were performed in accordance with the Science Council of Japan's Guidelines for the Proper Conduct of Animal Experiments. The protocols were approved by the Institutional Animal Care and Use Committee of National University Corporation Hokkaido University (approval ID: 20-0060).

Cell culture

HOS-ACE2/TMPRSS2 cells (HOS cells stably expressing human ACE2 and TMPRSS2) were maintained in DMEM (high glucose) (Sigma-Aldrich, Cat# 6429-500ML) containing 10% fetal bovine serum (FBS, Sigma-Aldrich Cat# 172012-500ML) and 1% penicillin–streptomycin (PS) (Sigma-Aldrich, Cat# P4333-100ML). VeroE6/TMPRSS2 cells (VeroE6 cells stably expressing human TMPRSS2; JCRB Cell Bank, JCRB1819) were maintained in DMEM (low glucose) (Wako, Cat# 041-29775) containing 10% FBS, G418 (1 mg/ml; Nacalai Tesque, Cat# G8168- 10ML) and 1% PS. microin of certain SARS-Cov-2 variants of concern is challenging. Therefore, durect
addressing the possibility of impirining inimunity by vaccination using human samples is
technically difficult. In this study, we use an e

Mrna vaccination in hamsters

Syrian hamsters (male, 4 weeks old) were purchased from Japan SLC Inc. (Shizuoka, Japan). Spikevax (0.2 mg/ml, Moderna) was thawed at room temperature in darkness and diluted in saline to vaccinate a hamster at 5 μ g/50 μ l per hamster intramuscularly. The vaccination was performed three times at a 28-day interval starting from 5 weeks old. All hamsters were monitored daily and weighed once a week. They did not show any clinical manifestations during the vaccination period.

SARS-cov-2 infection in hamsters

Animal experiments were performed as previously described and sera for the unvaccinated hamster group were obtained from a previous study [5-7]. Syrian hamsters (male, 4 weeks old) were purchased from Japan SLC Inc. for the unvaccinated group. For the virus infection experiments, hamsters were anaesthetized by intramuscular injection of a mixture of 0.15 mg/kg medetomidine hydrochloride, 2.0 mg/kg alphaxaone (Alfaxanâ, Jurox) and 2.5 mg/kg butorphanol. The clinical isolates of SARS-CoV-2 B.1.1 (strain TKYE610670; GISAID ID: EPI_ISL_479681) [5], Omicron BA.2 (strain TY40-385; GISAID ID: EPI_ISL_9595859) [5], Omicron BQ.1.1 (strain TY41-796-P1; GISAID ID: EPI_ISL_15579783) [6], or Omicron XBB.1 (strain TY41-795; GISAID ID: EPI_ISL_15669344) [7] (10,000 TCID50 in 100 µL), or saline (100 µL) were intranasally inoculated under anesthesia. Sera of infected hamsters were collected at 16 days postinfection (d.p.i). using cardiac puncture under anesthesia with isoflurane and used for neutralization assay.

RT–qpcr

RT–qPCR (**Figure 1B**) was performed as previously described [5]. Briefly, 5 μl culture supernatant was mixed with 5 μ l of 2 × RNA lysis buffer [2% Triton X-100 (Nacalai Tesque, Cat# 35501-15), 50 mM KCl, 100 mM Tris-HCl (pH 7.4), 40% glycerol, 0.8 U/μl recombinant RNase inhibitor (Takara, Cat# 2313B)] and incubated at room temperature for 10 min. RNasefree water (90 μl) was added, and then a diluted sample (2.5 μl) was taken as the template for real-time RT-PCR (targeting nucleoprotein-coding plus-strand RNA) performed according to the manufacturer's protocol using One Step TB Green PrimeScript PLUS RT-PCR kit (Takara, Cat# RR096A) and the following primers: Forward N, 5'-AGC CTC TTC TCG TTC CTC ATC AC-3'; and Reverse N, 5'-CCG CCA TTG CCA GCC ATT C-3'. The viral RNA copy number was standardized with a SARS-CoV-2 direct detection RT-qPCR kit (Takara, Cat# RC300A). Fluorescent signals were acquired using a CFX Connect Real-Time PCR Detection system (Bio-Rad). (strain 1Y41-795); UsAALD ID: EPI ISE. 1206093444) [7] (10,0000 TLODS) to 1000 HL), or-saline
and 16 day positive remanally included under anostensia. Seen of infered hands twee collected
at 16 day positive for the manufa

Neutralization assay

Pseudoviruses were prepared as previously described [5]. Briefly, lentivirus (HIV-1)-based, luciferase-expressing reporter viruses were pseudotyped with SARS-CoV-2 S proteins. HEK293T cells (1,000,000 cells) were cotransfected with 1 μg psPAX2-IN/HiBiT, 1 μg pWPI-Luc2, and 500 ng plasmids expressing parental S or its derivatives using PEI Max (Polysciences, Cat# 24765-1) according to the manufacturer's protocol. Two days post-transfection, the culture supernatants were harvested and centrifuged. The pseudoviruses were stored at –80°C until use.

The neutralization assay was prepared as previously described [5-8]. Briefly, the SARS-CoV-2 S pseudoviruses (counting ~20,000 relative light units) were incubated with serially diluted (120 fold to 87,480-fold dilution at the final concentration) heat-inactivated sera at 37°C for 1 hour. Pseudoviruses without sera were included as controls. Then, a 40 μl mixture of pseudovirus and serum/antibody was added to HOS-ACE2/TMPRSS2 cells (10,000 cells/50 μl) in a 96-well white plate. At 2 d.p.i., the infected cells were lysed with a Bright-Glo luciferase assay system (Promega, Cat# E2650), and the luminescent signal was measured using a GloMax explorer multimode microplate reader 3500 (Promega).

RESULTS

Preparation of hamster antisera by SARS-cov-2 infection with and without prior vaccination

To investigate the effect of vaccination on the induction of NAbs following breakthrough infection, we prepared (1) four groups of unvaccinated Syrian hamsters (**Figure 1A, top**); and (2) four groups of hamsters that intramuscularly received a 3-dose vaccination with monovalent mRNA-LNP (Spikevax, Moderna) at a 28-day interval (**Figure 1A, bottom**). Then, hamsters were challenged with SARS-CoV-2 ancestral strain B.1.1, Omicron BA.2, Omicron BQ.1.1, or Omicron XBB.1. To verify successful breakthrough infection in vaccinated hamsters, the viral RNA copy number via oral swabs at 2 d.p.i. was measured by RT-qPCR. As shown in **Figure 1B**, the viral RNA loads in the oral swabs of the BA.2- and BQ.1.1-infected hamsters were comparable, while that of XBB.1-infected hamsters was significantly lower than that of other groups. These RNA loads indicate breakthrough SARS-CoV-2 infection was established in the vaccinated hamsters. To investigate the effect of vaccination on the indetector
Inc. (i.e. in the production, we perpared (1) four groups of unvaccinated Syrian handsers (Figure 1A/(09)_k and
(2) four groups of hamsters that intramascularly

Evaluation of antiviral humoral immunity induced by SARS-cov-2 infection with and without prior vaccination

At 16 d.p.i., the sera were collected from infected hamsters (**Figure 1A**). We then performed neutralization assays using the sera and HIV-1-based pseudoviruses harboring the spike protein of B.1.1, BA.2, BQ.1.1, XBB.1, and XBB.1.5. The antisera obtained from unvaccinated hamsters exhibited neutralization activity against the variant infected, while antisera from hamsters infected with XBB.1 also cross-reacted with XBB.1.5 (**Figure 1C**). Consistent with our previous findings [5-7], natural SARS-CoV-2 infection efficiently induced antiviral humoral immunity against the variant infected.

In the case of hamster sera with a 3-dose vaccination (without SARS-CoV-2 infection), neutralization activity against the ancestral B.1.1 variant was observed (**Figure 1D**). However, these antisera did not exhibit neutralizing activity against other Omicron subvariants such as BA.2, BQ.1.1, XBB.1 and XBB.1.5 (**Figure 1D**). These observations mirror findings in humans [8, 12]. We then assessed whether the breakthrough infections of three Omicron subvariants, BA.2, BQ.1.1 and XBB.1, induced the neutralization activity against the variant infected, as observed in unvaccinated hamsters above. However, although anti-B.1.1 (ancestral SARS-CoV-2) neutralization activity was observed, the sera obtained from breakthrough infection hamsters did not exhibit prominent antiviral effects against the variant infected (**Figure 1D**). Although the 50% neutralization titer (NT50) of the sera obtained from BA.2 breakthrough infection hamsters against BA.2 was significantly lower than that against B.1.1 (4.3-fold), all sera obtained from eight breakthrough infection hamsters with BA.2 exhibited anti-BA.2 activity (**Figure 1D**). However, the NT50 values of the sera obtained from BQ.1.1 and XBB.1 breakthrough infection hamsters against the variant infected were profoundly lower than that against B.1.1 (**Figure 1D**).

Moreover, the NT50 values of the sera of three and five hamsters' breakthrough infection with BQ.1.1 and XBB.1 respectively were below detection limit (**Figure 1D**). These observations suggest that the induction of antiviral humoral immunity against a SARS-CoV-2 variant of infection is attenuated by comparatively-ancestral vaccine inoculation prior to infection.

DISCUSSION

Here, we investigated the impact of vaccination on the induction of humoral immunity against the SARS-CoV-2 variants infected using an experimental animal model and addressed the possibility of immune imprinting by vaccination. We showed that the hamsters infected with a variety of SARS-CoV-2 Omicron subvariants exhibited specific humoral immunity against the SARS-CoV-2 variant

infected. On the other hand, the infection of SARS-CoV-2 Omicron subvariants, particularly BQ.1.1 and XBB.1, in the hamsters that received three doses of monovalent mRNA vaccine did not induce specific humoral immunity against the SARS-CoV-2 variant infected. Consistent with findings in human samples [8, 12], these results suggest that breakthrough infections tend to boost the humoral immunity against the vaccine strain (i.e., ancestral SARS-CoV-2) rather than the variant infected after vaccination. Particularly, although the immunogenicity of XBB.1 was comparable to those of the other variants (**Figure 1C**), vaccination prior to XBB.1 infection failed to effectively induce antiviral humoral immunity against XBB.1 (**Figure 1D**). Because the antigenicity of XBB.1 is prominently different from that of ancestral SARS-CoV-2 [7, 8, 12], imprinted immunity can be observed when variants of SARS-CoV-2 breakthrough infections have differed immunogenicity from the vaccine strain. **DISCUSSION**
Here, we investigated the impact of vaccination on the induction of humoral immumity signist
the SARS-CoV-2 variants infected using an experimental animal model and and
research the possibility of immune impr

Here we showed experimental data suggesting the existence of imprinted immunity by vaccination in hamsters. However, it should be noted that our results do not necessarily suggest the ineffectiveness of anti-SARS-CoV-2 mRNA vaccines to date. First, these findings are brought from experiments using an animal model, and the antibody repertoire induced by SARS-CoV-2 infection should differ between hamsters and humans. Therefore, it is unclear to what extent the results shown in this study can be extrapolated to humans. Second, here we only analyzed monovalent vaccine effects, which is based on ancestral SARS-CoV-2, and therefore the impact of BA.1 or BA.5 bivalent vaccines remains unclear. Third, here we only evaluated the possibility of immune imprinting on humoral immunity. In studies using human samples, it is evident that monovalent mRNA vaccines can induce efficient cellular immunity against multiple SARS-CoV-2 subvariants [14]. Therefore, mRNA vaccines can contribute to prevent COVID-19 severity. Fourth, although the time interval in this study is fixed (28-day interval for vaccination, 28-day interval for infection after the third dose of vaccine, and the serum collection at 16 d.p.i.), previous studies using human samples suggest the time interval between vaccination and breakthrough infection can impact the magnitude of humoral immunity [15, 16]. Therefore, the

time interval between vaccinations and breakthrough infection after the last vaccination may modulate the magnitude of immune imprinting by vaccination.

In our study, experimental data using hamsters indicates the possibility of imprinted immunity as an effect of vaccination. With this in mind, the potential impact of imprinted immunity in humans requires deep investigation.

Acknowledgments

We would like to thank all members belonging to The Genotype to Phenotype Japan (G2P-Japan) Consortium.

This study was supported in part by AMED SCARDA Japan Initiative for World-leading Vaccine Research and Development Centers "UTOPIA" (JP223fa627001, to Kei Sato), AMED SCARDA Program on R&D of new generation vaccine including new modality application (JP223fa727002, to Kei Sato); AMED SCARDA World-leading institutes for vaccine research and development Hokkaido Synergy Campus (223fa627005h0001, to Hirofumi Sawa, Takasuke Fukuhara, and Keita Matsuno); AMED Research Program on Emerging and Re-emerging Infectious Diseases (JP22fk0108146, to Kei Sato; JP21fk0108493, to Takasuke Fukuhara; JP22fk0108617 to Takasuke Fukuhara; JP21fk0108494 to G2P-Japan Consortium Takasuke Fukuhara and Kei Sato; JP21fk0108425, to Kei Sato; JP21fk0108432, to Takasuke Fukuhara and Kei Sato); AMED Research Program on HIV/AIDS (JP22fk0410039, to Kei Sato); AMED CREST (JP22gm1610008, to Takasuke Fukuhara); JST PRESTO (JPMJPR22R1, to Jumpei Ito); AMED Japan Program for Infectious Diseases Research and Infrastructure (JP22wm0125008, to Hirofumi Sawa); JST CREST (JPMJCR20H4, to Kei Sato); JSPS KAKENHI Grant-in-Aid for Scientific Research B (21H02736, to Takasuke Fukuhara); JSPS KAKENHI Grant-in-Aid for Early-Career Scientists (20K15767, Jumpei Ito); JSPS Core-to-Core Program (A. Advanced Research Networks) (JPJSCCA20190008, Kei Sato); JSPS Research Fellow DC2 (22J11578, to Keiya Uriu); JST SPRING (JPMJSP2108, to Shigeru Fujita); World-leading Innovative and Smart Education (WISE) Program 1801 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (to Naganori Nao). humans requires deep investigation.

Acknowledgments

We would like to thank all members belonging to The Genotype to Phenotype again (G2P-

Japan) Consortium.

This study was supported in part by AMED SCARDA Japan Infulti

Consortia

The Genotype to Phenotype Japan (G2P-Japan) Consortium

The Institute of Medical Science, The University of Tokyo, Japan

Yu Kaku, Naoko Misawa, Arnon Plianchaisuk, Ziyi Guo, Alfredo A. Hinay Jr., Jarel Elgin M. Tolentino, Luo Chen, Mai Suganami, Mika Chiba, Ryo Yoshimura, Kyoko Yasuda, Keiko Iida, Naomi Ohsumi, Adam P. Strange, Shiho Tanaka

Hokkaido university, japan

Rigel Suzuki, Saori Suzuki, Hayato Ito, Shinya Tanaka, Masumi Tsuda, Lei Wang, Yoshikata Oda, Zannatul Ferdous, Kenji Shishido

Tokyo Metropolitan Institute of Public Health, Japan

Kenji Sadamasu, Kazuhisa Yoshimura, Hiroyuki Asakura, Isao Yoshida, Mami Nagashima

Tokai university, japan

So Nakagawa

Kyoto university, japan

Kotaro Shirakawa, Akifumi Takaori-Kondo, Kayoko Nagata, Ryosuke Nomura, Yoshihito Horisawa, Yusuke Tashiro, Yugo Kawai, Kazuo Takayama, Rina Hashimoto, Sayaka Deguchi, Yukio Watanabe, Ayaka Sakamoto, Naoko Yasuhara, Takao Hashiguchi, Tateki Suzuki, Kanako Kimura, Jiei Sasaki, Yukari Nakajima, Hisano Yajima Kenji Sadamasu, Kazuhisa Yoshimura, Hiroyuki Asakura, Isao Yoshida, Mami Nagashina

Tokai university, japan

So Nakagawa

Kyoto university, japan

Kotaro Shirikawa, Akifumi Takaori-Kondo, Kayoko Nagata, Ryogatke Nomura, Yo

Hiroshima university, japan

Takashi Irie, Ryoko Kawabata

Kyushu university, japan

Kaori Tabata

Kumamoto university, japan

Terumasa Ikeda, Hesham Nasser, Ryo Shimizu, MST Monira Begum, Michael Jonathan, Yuka Mugita, Otowa Takahashi, Kimiko Ichihara, Takamasa Ueno, Chihiro Motozono, Mako Toyoda

University of Miyazaki, Japan

Akatsuki Saito, Maya Shofa, Yuki Shibatani, Tomoko Nishiuchi

References

- 1. Krammer F. SARS-CoV-2 vaccines in development. Nature **2020**; 586:516-27.
- 2. Our World in Data. "Coronavirus (COVID-19) Vaccinations June 13, 2023)."
	- https://ourworldindata.org/covid-vaccinations.
- 3. Hou YJ, Chiba S, Halfmann P, et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science **2020**; 370:1464-8.
- 4. WHO. "Tracking SARS-CoV-2 variants (March 30, 2023)" https://www.who.int/en/activities/tracking-SARS-CoV-2-variants. **2022**.
- 5. Kimura I, Yamasoba D, Tamura T, et al. Virological characteristics of the novel SARS-CoV-2 Omicron variants including BA.4 and BA.5. Cell **2022**; 185:3992-4007.e16.
- 6. Ito J, Suzuki R, Uriu K, et al. Convergent evolution of the SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant. Nat Commun **2023**; 14:2671.
- 7. Tamura T, Ito J, Uriu K, et al. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nat Commun **2023**; 14:2800.
- 8. Uriu K, Ito J, Zahradnik J, et al. Enhanced transmissibility, infectivity, and immune resistance of the SARS-CoV-2 omicron XBB.1.5 variant. Lancet Infect Dis **2023**; 23:280-1.
- 9. Offit PA. Bivalent Covid-19 Vaccines A Cautionary Tale. N Engl J Med **2023**; 388:481-3.
- 10. Wang Q, Bowen A, Valdez R, et al. Antibody Response to Omicron BA.4-BA.5 Bivalent Booster. N Engl J Med **2023**; 388:567-9.
- 11. Reynolds CJ, Pade C, Gibbons JM, et al. Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure. Science **2022**:eabq1841.
- 12. Cao Y, Jian F, Wang J, et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature **2023**; 614:521-9.
- 13. Park YJ, Pinto D, Walls AC, et al. Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. Science **2022**; 378:619-27.
- 14. Liu J, Chandrashekar A, Sellers D, et al. Vaccines elicit highly conserved cellular immunity to SARS-CoV-2 Omicron. Nature **2022**; 603:493-6.
- 15. Levin EG, Lustig Y, Cohen C, et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. N Engl J Med **2021**; 385:e84.
- 16. Kaku CI, Starr TN, Zhou P, et al. Evolution of antibody immunity following Omicron BA.1 breakthrough infection. BioRxiv **2022**:doi: https://doi.org/10.1101/2022.09.21.508922.

Figure 1. Impact of immune imprinting by vaccination.

(**A**) Schematic time course of animal experiment in this study. The number of hamsters in each group (n) is indicated in parenthesis.

(**B**) Viral RNA loads in the oral swab. The copy numbers of viral RNA in the oral swab of breakthrough infection hamsters at 2 d.p.i. were quantified by RT-qPCR. The presented data are expressed as the average \pm SEM, and each dot indicates the result of an individual hamster. Statistically significant differences (*P* < 0.05) versus BA.2 (a green asterisk) or BQ.1.1 (a purple asterisk) were determined by two-sided Mann-Whitney U tests.

(**C and D**) Neutralization assay. The assay was performed with pseudoviruses harboring the S proteins of B.1.1 (the D614G-bearing ancestral virus), BA.2, BQ.1.1, XBB.1, and XBB.1.5. The following sera were used. (**C**) The sera obtained from hamsters infected with B.1.1 (12 hamsters), BA.2 (12 hamsters), BQ.1.1 (6 hamsters), and XBB.1 (6 hamsters) without vaccination. (**D**) The sera obtained from hamsters receiving 3-dose mRNA vaccination before SARS-CoV-2 infection, uninfected (i.e., only vaccinated; 9 hamsters), and breakthrough-infected with BA.2 (8 hamsters), BQ.1.1 (7 hamsters), and XBB.1 (8 hamsters). Assays for each serum sample were performed in triplicate to determine the 50% neutralization titer (NT50). Each dot represents one NT50 value, and the geometric mean and 95% confidential interval are shown. Statistically significant differences ($P < 0.05$) were determined by two-sided Wilcoxon signed-SARS-CoV-2 cmieron XHR.1.5 variant. Lancet Infect Dis 2023, 23:280-1.

9. O. Wang Q. Bowen A. Valdez R, eta LAntholy Response to Onicron BAA-BA.5 Bivalent ISoster: N

10. Wang Q. Bowen A. Valdez R, eta LAntholy Response t

