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Abstract

Virus-encoded circular RNA (circRNA) participates in the immune response to viral infection, affects the human immune system, and
can be used as a target for precision therapy and tumor biomarker. The coronaviruses SARS-CoV-1 and SARS-CoV-2 (SARS-CoV-1/2) that
have emerged in recent years are highly contagious and have high mortality rates. In coronaviruses, little is known about the circRNA
encoded by the SARS-CoV-1/2. Therefore, this study explores whether SARS-CoV-1/2 encodes circRNA and characteristics and functions
of circRNA. Based on RNA-seq data of SARS-CoV-1 and SARS-CoV-2 infections, we used circRNA identification tools (circRNA_finder,
find_circ and CIRI2) to identify circRNAs. The number of circRNAs encoded by SARS-CoV-1 and SARS-CoV-2 was identified as 151
and 470, respectively. It can be found that SARS-CoV-2 shows more prominent circRNA encoding ability than SARS-CoV-1. Expression
analysis showed that only a few circRNAs encoded by SARS-CoV-1/2 showed high expression levels, and the positive strand produced
more abundant circRNAs. Then, based on the identified SARS-CoV-1/2-encoded circRNAs, we performed circRNA identification and
characterization using the previously developed CirRNAPL. Finally, target gene prediction and functional enrichment analysis were
performed. It was found that viral circRNA is closely related to cancer and has a potential role in regulating host cell functions. This
study studied the characteristics and functions of viral circRNA encoded by coronavirus SARS-CoV-1/2, providing a valuable resource
for further research on the function and molecular mechanism of coronavirus circRNA.
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INTRODUCTION
Circular RNA (circRNA) was first found among the RNA of plant
pathogenic viruses, which are called viroids [1]. With the in-
depth study of the function of eukaryotic circRNAs, scholars are
re-examining viruses to find the possibility of truly encoding
circRNAs that are back-spliced from viral genes [2–4]. Recent
circRNA analysis has found and verified that viruses can encode
circRNA. Viral circRNAs are found in DNA viruses (such as herpes
virus and papilloma virus) [5]. These circRNAs range from 220 to
457 bp, and they lack protein-coding ability, different from viroids,
which also have a single-stranded circRNA structure [5, 6]. To
detect viruses and host circRNAs in samples, several groups have
applied RNase R for processing and have performed sequencing,
revealing various single- and double-stranded viruses [7]. They
identified multiple circRNAs from various viruses in samples of
cervical cancer, liver cancer, herpes virus and Epstein Barr virus
(EBV) [8]. Flemington et al. found that viral circRNAs are expressed
between the latent and lytic cycles of EBV and span multiple cell

lines [9]. With the deepening of research, the role of circRNAs
in viral infections is increasingly recognized, and it has been
found that circRNAs are involved in various viral infections (such
as those involving hepatitis B virus and human papillomavirus)
[10]. Viruses can hijack host circRNAs, leading to enhanced viral
replication and pathogenesis, and can also counteract innate
immune responses, playing a role in immune surveillance [11, 12].
Studying the influence of virus-encoded circRNAs in the host–
virus interaction process can facilitate understanding of unknown
physiological functions of circRNAs and their mechanisms in
disease pathogenesis and promote new diagnosis, treatment and
prognosis strategies for virus-related diseases [13–16].

As of 10 September 2022, the ongoing pandemic of a novel
coronavirus, named SARS-CoV-2, which is a coronavirus with
a positive single-stranded RNA genome, has led to infection of
605 467 311 people and resulted in 6 488 382 deaths [17, 18]. During
2002–2004, SARS-CoV-1 was circulating in 32 countries, infected
more than 8000 people and killed more than 900 people [19]. The
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pathogens SARS-CoV-1 and SARS-CoV-2 belong to Coronaviridae
and Betacoronavirus [20]. Both use ACE2 as their receptor, but they
belong to two types. The high fatality rate caused by SARS-CoV-
1/2 and the long-term epidemic indicate that coronaviruses are
among the most threatening viruses to human life [21]. Despite
effective vaccines and some treatment, infected individuals con-
tinue to die. Coronaviruses are the largest RNA viruses, with a
genome range of 26–32 kb and a diameter of 125 nm. The full
genome sequences of SARS-CoV-1 and SARS-CoV-2 are 29.7 kb
and 29.9 kb in length, respectively, consisting of 11–14 open read-
ing frames (ORFs) encoding 15–16 nonstructural proteins, four
main structural proteins, including spike protein (S), envelope
protein (E), membrane protein (M) nucleocapsid protein (N) and
5–8 helper proteins [22]. In addition to these typical ORFs, several
virus-encoded noncoding RNAs have also been found in coron-
avirus infection. Kim et al. showed a high-resolution map of the
SARS-CoV-2 transcriptome and found many transcripts encoding
unknown ORFs [23]. Du et al. found a new circRNA molecule,
circTNFAIP3, and found that overexpression of circTNFAIP3 pro-
motes coronavirus replication by reducing host cell apoptosis [24].
Morales et al. found that three small RNAs encoded by SARS-CoV-
1 are associated with infection-related lung pathology [25]. These
studies indicate that the circRNA encoded by these viruses may
play an important role in coronavirus infection. In particular, the
team of Professor Wei Wensheng of Peking University has devel-
oped a circRNA vaccine for COVID-19 and its variants, which fur-
ther confirms the important role of circRNA in virus therapy [26].

In recent years, virus-encoded circRNAs have been discovered
and characterized in several cancer-related viruses, such as Orf
virus [27] and Zika virus [28]. Some viral circRNAs are associated
with cancer progression, such as HPV-circE7 [29], ebv-circRPMS1
[30] and ebv-circLMP2A [31]. Despite some achievements in tar-
geting viral circRNAs, however, due to the lack of systematic anno-
tation of the SARS-CoV-1/2 viral genome, there are relatively few
reports on coronavirus circRNAs, and there are still many prob-
lems and challenges. Therefore, we identified thousands of circR-
NAs in SARS-CoV-1/2 from viral infection RNA-seq data. We also
characterized the expression, sequence characteristics, genomic
localization preferences and functions of these viral circRNAs (the
flow chart is shown in Figure 1). We collected RNase R-treated
and enriched circRNA-enriched SARS-CoV-1/2 RNA-Seq data, and
used circRNA detection tools (circRNA_finder [32], find_circ [33]
and CIRI2 [34]) that do not rely on genome annotation for circRNA
identification. Those identified as circRNA by all three methods
are considered high-confidence circRNA. Then, based on the high-
confidence circRNAs, we analyzed and annotated these circR-
NAs to systematically understand the characteristics of circRNAs
encoded by SARS-CoV-1/2. Based on our previous CirRNAPL algo-
rithm [35], using high-confidence circRNA encoded by SARS-CoV-
1/2 as test set for identification, we explored the characteristic dif-
ferences between circRNA encoded by SARS-CoV-1/2 and human
circRNA. Then, the interaction between SARS-CoV-1/2 circRNAs
and miRNAs was predicted, and functional enrichment analysis
based on target genes was conducted. Our systematic characteri-
zation of coronavirus circRNAs provides a valuable resource that
can be used to further explore the action mechanism of circRNAs
in coronaviruses.

RESULTS
Computational analysis of circRNAs encoded by
SARS-CoV-1/2
CIRI2, find_circ and circRNA_finder were used to identify cir-
cRNAs encoded by SARS-CoV-1 and SARS-CoV-2. The specific

number of circRNAs identified by the three methods is shown in
Figure 2.

The number of circRNAs encoded by SARS-CoV-1 and SARS-
CoV-2 identified by CIRI2, find_circ and circRNA_finder was 230
and 859, 443 and 1908, and 549 and 2118, respectively. Among
them, at least two methods detected 52 and 508 circRNAs
encoded by SARS-CoV-1 and SARS-CoV-2, and the number of
circRNAs detected by the three methods is as follows: 151 and
470. SARS-CoV-2 shows a more prominent circRNA encoding
ability than SARS-CoV-1. Those identified as circRNA by all
three methods are considered high-confidence circRNAs. High-
confidence circRNA was used in the following series of studies.
Among them, the results of the three methods are presented in
Additional file S1.

Sequence conservation of SARS-CoV-1/2 circRNA
The sequence conservation of viral circRNAs in the two coron-
aviruses was assessed using basic local alignment search tool
(BLAST). Hits with identity ≥80%, coverage ≥80% and e-value
≤1E-5 were defined as homologues of viral circRNA. According
to BLAST sequence alignment analysis, 118 circRNAs encoded by
SARS-CoV-1 have sequence homology with SARS-CoV-2, and 352
circRNAs encoded by SARS-CoV-2 have sequence homology with
SARS-CoV-1.

Expression of SARS-CoV-1/2 circRNA
To gain a deeper understanding of the characteristics of coron-
avirus circRNAs, high-confidence circRNAs were extracted, and
the distribution junction-spanning reads of virus circRNA was
statistically analyzed (Figure 3A and D), as were the relationship
between the length of virus circRNA sequence and the number of
circRNAs (Figure 3B and E) and the distribution characteristics of
expression levels (Figure 3C and F).

For SARS-CoV-1, the number of junction-spanning reads for
each sample circRNA ranges from 1 to 21, with 93 of 151 circRNAs
having at least 2 and 17 having at least 5 (Figure 3A). The distri-
bution characteristics of virus circRNA expression were analyzed
based on the number of connection readings (Figure 3B and C).
Among them, 55 circRNAs encoded by SARS-CoV-1 had expres-
sion levels less than −1, while 8 were greater than 1, with the
majority located in a small number of SARS-CoV-1 circRNAs with
high expression levels. Then, the distribution characteristics of
the length and the number of circRNAs encoded by SARS-CoV-1
were calculated. CircRNAs identified from different samples with
the same reverse splicing site were integrated into one circRNA,
as shown in Figure 3(B). Statistical data showed that 84 of 151
circRNA encoded by SARS-CoV-1 have lengths between 200 and
1 kb, which is consistent with the characteristics of circRNA. Inter-
estingly, the 22 circRNAs encoded by SARS-CoV-1 have almost a
head-to-tail connection length of ≥10 kb in the viral genome.

For SARS-CoV-2, the number of junction-spanning reads for
each sample’s circRNA ranges from 1 to 156 (Figure 3D), and the
number of junction-spanning reads was significantly greater than
that of SARS-CoV-1. Of 470 viral circRNAs, 264 have at least two
junction-spanning reads, accounting for over 50% of the total.
Among them, 50 SARS-CoV-2 circRNAs had at least five junction-
spanning reads. The distribution characteristics of SARS-CoV-
2 circRNA expression were analyzed based on the number of
connection readings. Among them, 114 SARS-CoV-2 circRNAs had
expression levels less than −1, while 55 were greater than 1. It
can also be observed that the number of SARS-CoV-2 circRNAs
with high expression levels is still in the minority. Then, the length
and number of SARS-CoV-2 circRNAs were counted, as shown
in Figure 3C. Statistical data show that the SARS-CoV-2 circRNA
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Figure 1. The flow chart of the research framework of this paper. (A) Dataset preparation. (B) CircRNA identification. (C) Advanced analysis.

Figure 2. Number of circRNAs identified by three computational meth-
ods. (A) SARS-Cov-1; (B) SARS-Cov-2.

lengths of 292 viruses range from 200 to 1 kb, which is similar
to the characteristics of SARS-CoV-1 and conforms to circRNA
characteristics. Only 39 viruses produce circRNAs with lengths
≥10 kb.

Then, the location of the circRNA in the SARS-CoV-1 and SARS-
CoV-2 genomes was analyzed, and the distribution characteristics
of the positive (+) and negative (−) strands of the virus circRNAs
were analyzed (Figure 4A and B). Based on the published SARS-
CoV-1/2 reference genomes, a schematic diagram was drawn, and
the distribution of the positive (+) and negative (−) strands in
the virus genome was calculated based on the junction-spanning
reads of the virus circRNAs.

Although in most cases the length of circRNAs is hundreds
of bases, 11% (17 of 151) of SARS-CoV-1 and 10% (50 of 470) of
SARS-CoV-2 remained after selecting circRNAs with at least

5 junction-spanning reads. When mapping the connection
readings of virus circRNA to the positive (+) and negative (−)
strands of SARS-Cov-1/2 genomes, circRNAs were found to be
widely expressed from throughout the entire genome and highly
expressed from certain regions of ORF1ab, M, ORF6/ORF7a/ORF7b
and N/ORF8b. It was also observed that the number of circRNAs on
the negative (−) chain was twice that on the positive (+) chain. As
a positive-stranded, single-stranded RNA virus, SARS-CoV-1 uses
full-length replication or discontinuous transcription to generate
a negative-strand RNA genome or subgenomic negative-strand
RNA as the template for synthesis of positive-strand RNA rather
than encoding protein. Whether negative-strand viral circRNAs
play a regulatory role in positive-strand RNA synthesis is currently
uncertain. The viral circRNAs identified in SARS-CoV-2 show
negative-strand bias. Taken together, the findings for SARS-CoV-
1 and SARS-CoV-2 suggest that positive-strand viruses produce
more abundant circRNAs than negative-strand.

CircRNAs interact with the 5′-terminal sequence and the 3′-
terminal sequence, leading to cross-linking between the two ends
of the genome or subgenome and resulting in circularization.
Therefore, we continued to count and analyze the cyclization
positions of circRNAs in SARS-CoV-1 and SARS-CoV-2, as shown in
Figure 4(C) and (D). With the short-length gray circRNA near the
diagonal as the background, the orange and red dots in the upper
left corner indicate different circularized circRNAs in the figure.
The two color distributions represent the genome length covered,
that is, they represent ≥50 and ≥90% of the circRNAs, respectively.
It was also found that the expression level of SARS-CoV-2 is more
pronounced than that of SARS-CoV-1.
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Figure 3. (A–C) Statistics of the circRNA of the SARS-Cov-1. (A) Quantity distribution of junction reads of circRNA. (B) Length distribution of viral circRNA.
(C) Distribution of viral circRNA expression. (D–F). Statistics of the circRNA of the SARS-Cov-2. (D) Quantity distribution of junction reads of viral circRNA.
(E) Length distribution of viral circRNA. (F) Distribution of viral circRNA expression.

Figure 4. (A) Coverage curve of viral circRNAs on the SARS-Cov-1 reference genome. (B) Coverage curve of viral circRNAs on the SARS-Cov-2 reference
genome. (C) Scatter diagram of circularization position of circRNA in SARS-Cov-1. (D) Scatter diagram of circularization position of circRNA in SARS-
Cov-2.

Sequence characteristic analysis of
SARS-CoV-1/2 circRNA
After analyzing the conservation and homology of various SARS-
CoV-1/2 circRNAs, we used CirRNAPL model for circRNA identifi-
cation, and 307 sequences were predicted as circRNAs, achieving

an accuracy rate of 0.59. Then, the differences in sequence
characteristics between SARS-CoV-1/2 circRNAs and general
human circRNAs were explored. To create a more intuitive graph-
ical representation, the sequence features are dimensionally
reduced using the feature dimensionality reduction algorithm
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Figure 5. Sequential feature analysis. (A–K) Comparison of the characteristics of SARS-CoV-1/2 coronavirus circRNA and human circRNA. (L) Violin plot
to visualize feature distribution. (M) The 20 most important features. (N) Summary plot for SHAP values. For each feature, one point corresponds to a
single sample. The SHAP value along the x-axis represents the impact that feature had on the model’s output for that specific sample. Features in the
higher position in the plot indicate the more important it is for the model. (O) SHAP dependence plots. These plots show the effect that a single feature
has on the model predictions and the interaction effects across features. Each point corresponds to an individual sample, the value along the x-axis
corresponds to the feature value.

t-SNE, and the scatterplots are visualized in two-dimensional
space. Figure 5A–K shows the scatter plot of nine groups of
features after t-SNE dimension reduction (purple points are SARS-
CoV-1/2 circRNAs, blue points are human circRNAs).

Figure 5(A)–(K) shows that the 2- and 3-mer characteristic
repeat points are the most, indicating that the differences
between the two are less, which shows that the sequence
frequency characteristics of k-mer of circRNA encoded by
SARS-CoV-1-1/2 have no significant differences among human
circRNAs. Second, triplet features have much fewer duplicate
points, and the number of overlapping points of Mismatch and
pc-psednc are also reduced. For graph, dac, dacc, dcc, nmbac and
sc-psednc features, the point distribution of circRNA encoded
by SARS-CoV-1-1/2 and human circRNA has boundaries, and
there is a significant difference between the two. By comparison,
the characteristic differences between the circRNA encoded by
SARS-CoV-1-1/2 and human circRNA are quite significant, and
the boundaries are relatively clear. When coronavirus encodes

circRNA, it may cause changes in the structure and composition
of circRNA, resulting in differences between the two. This can also
provide a new direction for the functional research of circRNA
encoded by SARS-Cov-1/2.

Violin plots were drawn to visualize the distribution of 2D
horizontal vectors before t-SNE after dimensionality reduction
for SARS-CoV-1/2 circRNAs and human circRNAs (Figure 5L).
Significant differences exist in the distribution of characteristic
data between SARS-CoV-1/2 circRNA and human circRNA, further
demonstrating the characteristic difference between the two.

We leverage SHAP to analyze feature contributions and depen-
dencies. The SHAP value represents the contribution of a feature
to the model output change, reflects the influence of the feature
in each sample, and can also show positive and negative effects.
First, the absolute SHAP values of each feature in the circRNA
were averaged, and the 20 most important features were calcu-
lated and described with a SHAP summary map, as shown in
Figure 5(M). Among the first 13 features, graph71 occupies the
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first place, and graph occupies four places, followed by pc-psednc,
dcc, dac, Mismatch and sc-psednc.

Then, summary plots were constructed to better understand
the relationship between eigenvalues and model outputs, as well
as the patterns of overall sample characteristics. Count the SHAP
values for each feature for each sample and observe for out-
liers if present. Figure 5(N) shows a summary plot of the top 20
most important features. First, the graph71 feature is the most
important. When the value of graph71 is larger, the model will
have a negative impact on the model’s prediction of circRNA, and
when the value is smaller, it will have a positive impact. There are
similar situations in six features including graph89, pc-psednc31
and sc-psednc43. The opposite situation occurs on features such
as pc-psednc43, dac9 and pc-psednc52, that is, a larger value
of pc-psednc43 has a positive impact on the model prediction
as a circRNA. The influence of multiple features such as dcc is
relatively vague. graph71 (−0.06 to 0.06) and graph89 (−0.05 to
−0.04) have large variations and dominate the behavior of the
model.

Then, to understand how individual features affect the output
of the model, we analyzed the SHAP value of the graph71 feature,
comparing it with the feature value of all samples in the set
data. To help reveal graph71 interactions, another feature was
automatically selected for coloring and was not similarly depen-
dent on graph71 (Figure 5O). It can be seen that graph71 has a
turning point of about 0.00. For functional interactions, graph71
(−0.05, 0.00) and high-featured graph3, graph71 (0.00–0.05) and
high-featured graph3 contribute to accurate model predictions,
while low eigenvalues of graph3 show little effect. More functional
interaction dependency graphs are available in Additional file S2.

Interactions between SARS-CoV-1/2 circRNAs
and miRNAs
To further analyze whether coronavirus circRNA can act as a
sponge for miRNAs in infected host cells, we used miRanda and
TarPmiR to predict interaction. We implemented predictive anal-
ysis of circRNAs (length <1 kb and junction-spanning reads ≥2,
combined analysis of circRNAs from SARS-CoV-1 and SARS-CoV-2
data) and host miRNAs from the comprehensive miRNA database
miRBase. Our analysis predicted 489 miRNA–circRNA pairs and
72 unique human miRNAs. The results of the two methods are
presented in Additional file S3.

To identify important miRNAs with strong interactions with
circRNA encoded by SARS-CoV-1/2, we integrated the output of
miRanda and TarPmiR to calculate the comprehensive quality
score of interaction [36]. We focused on analyzing miRNAs with
multiple connections to coronavirus circRNA. We found that hsa-
miR-557 interacted with 8 circRNA encoded by SARS-CoV-2 and
that hsa-miR-5088-5p, hsa-miR-103a-2-5p and hsa-miR-367-5p
interacted with 21, 13 and 25 circRNAs encoded by SARS-CoV-
1, respectively. More importantly, the eight circRNAs encoded by
SARS-CoV-2 interacting with hsa-miR-6747-5p showed a very high
mass fraction. Then, a literature search was conducted for sev-
eral miRNAs. According to the literature [37], biogenesis of miR-
5088-5p is upregulated by Fyn, promoting hypomethylation of its
promoter, which is related to malignant tumors in breast cancer.
Hsa-miR-103a-2-5p can affect the occurrence and development of
liver cancer cells by inhibiting miR-34a [38]. It was also observed
that hsa-miR-4745-5p is upregulated in colorectal cancer patients
[39]. These results all indicate potential interactions between host
miRNAs and viral circRNAs, and the role of some miRNAs in viral
pathological regulation deserves further research.

Functional analysis of SARS-CoV-1/2 circRNAs
and miRNAs
To further explore the function of circRNA encoded by SARS-CoV-
2/1, we used three miRNA target databases, TargetScan, miRDB
and miRTarBase, to retrieve the target genes of the 72 miRNAs
identified. A total of 638 miRNA–mRNA interactions and 604
target genes were identified. Then, Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment anal-
yses were performed based on the target genes (as shown in
Figure 6A and B). The results of the GO and KEGG analyses are
presented in Additional file S4.

Enrichment of the target genes revealed significantly enriched
pathways and functions. The top 10 KEGG pathways correlate
highly with mucoprotein synthesis, cancer pathway, thyroid sig-
nal, proteoglycan in cancer, prostate cancer and other pathways,
indicating that the circRNA in coronavirus tumor samples is
involved in viral infection and tumorigenesis. Biological process
(BP) analysis showed that the target genes are involved in cel-
lular nitrogen metabolism, ion binding, biosynthesis, cell pro-
tein modification, small molecule metabolism, gene expression,
neurotrophic TRK receptor signaling pathway, catabolism, viral
processes and symbiosis, including parasitic mutualism and other
biological processes. For cellular component (CC) analysis, terms
are mainly associated with organelle, protein complex, honey-
comb components, cytoplasm, nucleoplasm, platelets α granular
lumen, microtubule organizing center, lysosome lumen, vacuole
and information node. MF analysis showed links to molecular
function, nucleic acid binding transcription factor activity, protein
binding transcription factor activity, enzyme binding, cytoskele-
ton protein binding, enzyme modulator activity, ribonucleic acid
binding, transmembrane transport protein activity, protein bind-
ing and bridging, etc. GO-enriched terms provide clues on how
viral circRNA plays a regulatory role in infected host cells. Viral
circRNAs can regulate the cell cycle and protein structure and
location through transcriptional inhibitory activity. In addition,
the terminology of CCs, including nuclear envelope and nuclear
spots, also showed enriched. Overall, the enriched functions are
consistent with the role of viruses, indicating that some virus
circRNAs act as host miRNA sponges to regulate infected host
cells.

CONCLUSION
An increasing number of viral circRNAs have been found to play
important roles in single- and double-stranded viruses. However,
in coronaviruses, little is known about the virus-encoded circR-
NAs. This study conducted data mining on coronavirus infection-
related RNA sequencing data and analyzed the circRNA encoded
by SARS-CoV-1/2. The main contents of this study are as follows:
(1) compared with human circRNA, circRNA encoded by SARS-
CoV-1/2 is rarely conserved and may evolve faster than human
circRNA. In terms of characteristics, the circRNAs encoded by
SARS-CoV-1/2 differed in RCM, conservation score, graph struc-
ture and compositional features. Except for the less significant
differences between RCMs, significant differences were found in
the other three groups. This result indicates that the virus may
change its structure and composition when encoding circRNA,
which also provides a direction for future research. (2) A total
of 621 highly reliable viral circRNAs were identified from two
coronaviruses. By analyzing the reads across junctions, only a few
SARS-CoV-1/2-encoded circRNAs showed high expression levels.
SARS-CoV-1/2 recognizes the largest number of circRNAs encoded
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Figure 6. GO and KEGG functional analysis of SARS-CoV-1/2 coronavirus circRNA. (A) GO. (B) KEGG.

between 200 and 1 kb, which is consistent with the characteristics
of human circRNAs. (3) The circRNA encoded by SARS-CoV-1/2
shows positive- and negative-strand bias, with the positive strand
producing more abundant circRNA. (4) Target gene prediction
and functional enrichment analysis of circRNA encoded by SARS-
CoV-2 show strong correlation with viruses and cancer. Several
targets were predicted through the interaction between SARS-
CoV-2-encoded circRNA and miRNA. It has also been found that
coronavirus circRNA may participate in many KEGG pathways
related to the nervous system and cancer.

This study also has some limitations that need to be improved
and addressed. (1) Identification of viral circRNAs from RNA-
seq data sets of in vitro viral infections. However, viral circRNAs
are highly tissue specific [40]. Therefore, the expression patterns
of these viral circRNAs in other types of human cells or tis-
sues in vivo require further study. (2) This study only identified
the existence of viral circRNA through computational methods,
and experimental verification of its existence requires further
efforts. (3) Due to limited public database data, the number of
viral circRNAs and SARS-CoV-1/2 detected in this study is still
limited.

METHODS AND MATERIALS
Dataset collection
Gene Expression Omnibus (http://ww.ncbinlm.nih.gov/geo/) and
Sequence Read Archive (https://ncbiinsights.ncbi.nlm.nih.gov/
tag/sra/) at National Center of Biotechnology Information (NCBI,
https://www.ncbi.nlm.nih.gov/) were searched with the keywords
‘virus’ and ‘SARS-CoV-1/2’. All datasets were manually checked,
and datasets containing one of the following keywords were
retained: ‘Total RNA’, ‘rRNA deleted’, ‘rRNA deleted’, ‘ribominus’,
‘RNase R’, ‘polyA RNA deleted’ and ‘non polyadenylated’.
The NCBI SRA toolkit was downloaded to obtain a total RNA
sequencing dataset (ID: GSE148729) for SARS-CoV-1/2-infected
Calu-3 cells [41, 42].

The SARS-CoV-1/2 sequencing data downloaded from NCBI
cannot be directly used because the sequencing data formats are
not commonly used; the format SRA is a common data storage
format for NCBI and uses binary compression. Fastq files are
text files, and some software needs to be used to convert data
types. In addition, there are a considerable number of low-quality
bases and few splice sequences in the obtained sequencing

data. To ensure the accuracy of subsequent analysis and the
quality of the data, we performed quality control on the data
and removed all these low-quality sequences. We assessed the
quality of sequencing reads using FastQC v0.21.0 (http://www.
bioinformatics.babraham.ac.ukjects/fastqc/). We used FASTQ
v0.21.0 with default parameters to remove low-quality bases
and PRINSEQ-lite v0.20.4 [43] with deep = 1 to reduce sequence
repeats.

Computational identification of SARS-CoV-1/2
circRNA
Based on the RNA-seq data of SARS-CoV-1/2, we used cir-
cRNA_finder [32], find_circ [33] and CIRI2 [34] identify coronavirus
circRNA. The circRNA_finder uses a STAR reader aligner to
identify chimeric junction reads and then filters them by splicing
the distance between the donor and receptor to be less than
100 000 bp. The find_circ first maps the read data to the reference
genome through Bowtie2 and then discards the mapped read data.
CIRI2 obtains read mapping information through local alignment
with BWA-MEM. After processing the data through the above
steps, BWA-MEM was first used to compare the clean reads with
the reference genome of the virus.

Among them, the version of BWA is 0.7.17, parameter: -T 19.
The version of STAR is 2.7.1a, using default parameters. The
version of Bowtie2 is 2.1.0, parameter: -p16. Then three compu-
tational tools (CIRI2, find_circ and circRNA_finder) were used to
identify viral circRNAs using parameters recommended in the
manual.

Homology analysis of SARS-CoV-1/2 circRNA
Homology analysis for SARS-CoV-1/2 was performed using the
Basic Local Alignment Search Tool (BLAST) (version 2.9.0+)
sequence alignment algorithm [44] and HAlign [45–48]. Hits
with homology ≥80%, coverage ≥80% and e-value ≤1E-5 were
considered to be homologous with the queried virus circRNAs.

Analysis of expression of SARS-CoV-1/2 circRNA
After identifying coronavirus circRNAs, the host gene, length,
transcriptional chain, number of junction-spanning reads and
expression level of the circRNAs of the viruses were analyzed.
When using three software programs (circRNA_finder, find_cic,
CIRI2) to identify circRNAs, the number of reverse splicing sites
(bsj reads) for each circRNA can be obtained. Then, the number of
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bsj reads per million mapped reads for that circRNA is calculated
based on the number of bsj reads per million mapped reads for
each circRNA [49]. The expression level of coronavirus circRNAs
was measured by the logarithm of counts per million mapped
reads (CPM), which is ln(CPM). The CPM calculation formula is
shown in Equation (1):

CPM =
( n

N

)
× 106 (1)

where n and N represent the number of junction-spanning reads
and the number of mapped reads, respectively.

We initially identified circRNAs encoded by SARS-CoV-1/2 with
at least two splice site junctions at reverse splicing sites. After
determining basic statistics, to control false positives, circRNAs
with at least five connection readings were selected for further
analysis.

Analysis of sequence characteristics of viral
circRNAs
Based on the results of circRNA encoded by SARS-CoV-1/2 and
our previous study [35], the identified and highly reliable 562
circRNA sequences were used as the test set, and the constructed
CirRNAPL was used to identify the SARS-CoV-1/2 circRNA (as a
machine learning algorithm, circRNA prediction is made based on
RNA sequence data, and its evaluation index is accuracy). Then,
we extracted the sequence features of SARS-CoV-1/2 using Pse-in-
one (2-mer, 3-mer, dac, dacc, dcc, Mismatch, nmbac, pc-psednc,
sc-psednc, triplet and graph) [50], performed feature analysis
on the SARS-CoV-1/2 sequence data, and compared the differ-
ence in sequence features between SARS-CoV-1/2 circRNA and
human circRNA. Use the t-SNE dimensionality reduction method
to perform feature selection on each feature and perform two-
dimensional visual feature difference analysis on important fea-
tures, and draw a violin diagram to visualize the data distribu-
tion of important features. Using the SHapley Additive ExPlana-
tions (SHAP) [51] analysis method, using the coronavirus circRNA
sequence as a test set, based on the previous prediction model, the
coronavirus feature interpretability analysis was carried out to
explore the relationship between the feature and the model out-
put. SHAP is a method for interpreting individual predictions [52–
55]. The SHAP interpretation method calculates the Shapley value
based on coalition game theory. The goal of SHAP is to explain the
prediction of an instance by calculating the contribution of each
feature to the prediction model.

Analysis of interaction between viral circRNA
and miRNA
MiRNAs were obtained from the miRBase database (http://
mirbase.org/). TarPmiR [56] and miRanda [57] software programs
were used to predict circRNAs’ interactions with miRNAs. Viral
circRNAs with a length of ≤1 kb and human miRNAs were
collected from miRBase using miRanda v3.3a and TarPmiR to
predict miRNA–circRNA interactions. MiRanda uses the free
energy combination of miRNA and its target gene for miRNA
target prediction: the higher the free energy is, the weaker the
binding force is, and the binding strength is inversely proportional
to the free energy. TarPmiR is a machine learning-based method
that calculates more features. To control false positives, we
conducted analysis based on the intersection of the recognition
results of these two tools; we used strict parameter settings
for target prediction, and the interaction predicted by the two
methods was accepted for further analysis. For miRanda, two

important parameters are set: Max Score ≥160 and Max Energy
≤−20 kcal mol−1. Two important parameters of TarPmiR are
binding probability = 1 and energy ≤−20 kcal mol−1. miRanda
has two evaluation metrics, maximum score and maximum
energy, and TarPmiR is the output energy. The outputs of the two
software programs are then combined to calculate a composite
quality score. We performed min–max normalization on Max
Score, Max Energy and Energy and scaled them between 0 and 1,
whereby lower energy indicates more stable binding. Therefore,
Max Energy and Energy are inverted before scaling. The composite
quality score was defined as the average of the scaled outputs
of miRanda and TarPmiR, with higher scores indicating higher
binding quality.

Functional analysis of SARS-CoV-1/2 circRNA
Functional enrichment of circRNA source genes or potential target
genes encoded by SARS-CoV-1/2 to explore their potential bio-
logical functions is important for the study of circRNA. First, we
retrieved miRNA–mRNA interaction data from the miRNA target
databases TargetScan [58], miRDB [59] and miRTarBase [60]. Then,
based on the identified coronavirus circRNAs with high confi-
dence, we performed GO (https://geneontology.org/) and KEGG
(https://www.genome.jp/kegg/pathway.html) enrichment analy-
ses of miRNA target genes using DAVID (https://david.ncifcrf.gov/)
to further study circRNA functions. As a comprehensive database,
DAVID not only organizes biological function annotation data
such as gene or protein lists but also provides tools for analysis.
GO analysis involves BP, MF and CC. Preliminary prediction of
the function of SARS-CoV-1/2 virus circRNAs was also performed
through KEGG enrichment analysis of related pathways. Among
them, all KEGG pathways and GO terms with q-values <0.05 were
considered significantly enriched.

Key Points

• We identified thousands of circRNAs encoded by SARS-
CoV-1 and SARS-CoV-2.

• The expression of viral circRNA in SARS-CoV-1 and
SARS-CoV-2 was analyzed.

• Viral circRNA has different functions in SARS-CoV-1 and
SARS-CoV-2.

SUPPLEMENTARY DATA
Supplementary data are available online at http://bib.oxfordjournals.
org/.

FUNDING
The National Natural Science Foundation of China (62231013,
62201129, 62303328, 62302341, 62271329, 62372332); the National
Key R&D Program of China (No. 2022ZD0117700); Research
fund of Shenzhen Polytechnic University (No. 6022331007K,
No. 6022310036K, No. 6023310037K); Key Field of Department
of Education of Guangdong Province (No. 2022ZDZX2082); the
Special Science Foundation of Quzhou (No. 2023D036).

DATA AVAILABILITY
All code and data generated or analyzed during this study are
included in this published article, its additional file and publicly

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/2/bbad537/7590317 by guest on 29 January 2024

http://mirbase.org/
http://mirbase.org/
http://mirbase.org/
https://geneontology.org/
https://geneontology.org/
https://geneontology.org/
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad537#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/


Expression analysis of circRNA encoded by SARS-CoV-1/2 | 9
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