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Abstract

Background andPurpose:Cerebral hypoperfusion has been described in both severe and

mild forms of symptomatic Coronavirus Disease 2019 (COVID-19) infection. The pur-

pose of this study was to investigate global and regional cerebral blood flow (CBF) in

asymptomatic COVID-19 patients.

Methods: Cases with mild COVID-19 infection and age-, sex-, and race-matched healthy

controls were drawn from the Aging Brain Consortium at The University of South

Carolina data repository. Demographics, risk factors, and data from the Montreal Cog-

nitive Assessment were collected. Mean CBF values for gray matter (GM), white matter

(WM), and the whole brain were calculated by averaging CBF values of standard space-

normalized CBF image values falling within GM and WM masks. Whole brain region

of interest-based analyses were used to create standardized CBF maps and explore

differences between groups.

Results: Twenty-eight cases with prior mild COVID-19 infection were compared with 28

controls.Whole-brain CBF (46.7± 5.6 vs. 49.3± 3.7, p= .05) andWMCBF (29.3± 2.6 vs.

31.0±1.6,p= .03)werenoted tobe significantly lower inCOVID-19cases as compared to

controls. Predictive models based on these data predicted COVID-19 groupmembership

with a high degree of accuracy (85.2%, p< .001), suggesting CBF patterns are an imaging

marker of mild COVID-19 infection.

Conclusion: In this study, lower WM CBF, as well as widespread regional CBF changes

identified using quantitative MRI, was found in mild COVID-19 patients. Further studies

are needed to determine the reliability of this newly identified COVID-19 brain imaging

marker and determine what drives these CBF changes.
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INTRODUCTION

Central nervous system (CNS) involvement in severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) infection, as noted in the Coro-

navirus Disease 2019 (COVID-19) pandemic, has been increasingly

recognized in the literature for possible mechanisms of neuroinvasion,

neurotropism, and neurovirulence.1 Critically ill COVID-19 patients,

who experience severe hypoxia state and an inflammatory/cytokine
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storm, often have more severe CNS injury and systemic complica-

tions. In comparison, patients with milder infection and no specific

neurological symptoms in the acute phase typically have better clin-

ical outcomes.2 The advent of vaccination and less virulent strains

of COVID-19 (eg, Omicron) has led to milder COVID-19 infection.3,4

Although patientswithmild COVID-19without any neurologicalmani-

festations appear tomake complete recovery, limiteddata are available

on their global and regional cerebral blood flow (CBF).
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Based on the literature, cerebral perfusion abnormalities in CNS

viral infections vary from high to lowCBF, depending on the implicated

virus. An increase inCBFhas beendemonstrated inmost cases, namely,

herpes simplex virus and tick-borne encephalitis, while a reduc-

tion in CBF occurs with human immunodeficiency virus infection.5

With COVID-19 infection, at least three patterns of cerebral perfu-

sion abnormalities have been reported: (1) in the early encephalitis

phase,N-isopropyl-[123I]p-iodoamphetamine (123I-IMP) SPECT stud-

ies show cerebral hyperperfusion is possibly related to inflammation6;

(2) in the later recovery phase, those with severe initial COVID-19

infection show global hypoperfusion that correlates with poor recov-

ery outcome7; and (3) those with milder initial COVID-19 infection

show white matter (WM) tract changes, possibly resulting from WM

ischemia-hypoxia or immune-mediated inflammatory demyelination.8

The purpose of the current studywas to investigate global and regional

WM and gray matter (GM) hypoperfusion in a group of patients with

milder COVID-19 infection.

METHODS

Participants

Data from 56 participants, half of whom were diagnosed with COVID-

19 (N = 28) and half of whom were healthy control participants

(N = 28), were drawn from the Aging Brain Cohort at The Univer-

sity of South Carolina (ABC@UofSC) data repository.9 Given evidence

from prior studies that CBF measures can significantly vary as a func-

tion of age and sex, we ensured that the two samples were matched

in terms of these demographic variables. All participants were native

English speakers, were predominantly right-handed, and reported no

abnormal neurological conditions or history of brain injury. COVID-19

severity, which was treated as an ordinal variable in our models, was

based on self-report and fell into one of five categories: (1) participant

received no treatment of any kind (N= 4); (2) participant used over the

countermedicines for symptoms (N= 15); (3) participant visited a doc-

tor andusedprescribedmedicines (N=3); (4) participant visitedurgent

care or the emergency room (not admitted) (N=6); and (5) participants

admitted to a hospital (N= 0).

Standard protocol approvals and patient consents

All study participants consented to participate in theABC@UofSCdata

repository. The institutional review board at the University of South

Carolina approved both the original ABC@UofSC study as well as the

use of the current data set from the repository.

MRI data collection

All neuroimaging data (T1-structural scan and arterial spin labeling

[ASL] scan) were obtained from the data repository associated with

the ABC@UofSC study, an ongoing cross-sectional cohort study at

the University of South Carolina. MRI data were collected at the

McCausland Center for Brain Imaging located at Prisma Health Rich-

land Hospital, Columbia, SC, using a Siemens 3T Prisma Fit scanner

equipped with a 20-channel head coil. Foam cushions were used

to stabilize participants’ heads and minimize unwanted movement

during scanning. The muti-echo, T1-weighted structural image had

the following parameters: repetition time (TR) = 25.30 ms, inver-

sion time (TI) = 1100 ms, echo time (TE) = (1.44, 2.9, 4.36, 5.82,

and 7.28 ms), flip angle = 7.0 degrees, 256 × 192 × 256 mm

resolution, 1-mm isotropic voxel size, Generalized Autocalibrating

Partial Parallel Acquisition (GRAPPA) ×2, interleaved ascending acqui-

sition with anterior-posterior (A >> P) phase encoding, duration

6 minutes and 7 seconds. The Arterial Spin-labeled sequence was

collected with the following settings: 97 volumes, TR = 5000 ms,

TE= 14ms, flip angle= 90 degrees, slices= 24, distance factor= 10%,

220 × 220 × 119 mm resolution, 3.4 × 3.4 × 4.5 mm voxel size, 6/8

phase partial Fourier, interleaved ascending acquisition with A >>

P phase encoding, bolus duration = 700 ms, inversion time = 1800

ms, 6-postlabeling delay (PLD) (400, 725, 1050, 1350, 1675, and

2000 ms), duration = 8 minutes and 7 seconds. Results from a 42-

second time-of-flight scan (40 slices, TR = 21 ms, TE = 3.43 ms, flip

angle = 30 degrees, –50% distance factor, 263 × 350 × 350 mm res-

olution, 0.3 × 0.3 × 1.3 mm voxel size, to positioning of the tagging

plane for the ASL sequence, GRAPPA ×3) were manually inspected

and used to guide placement of the ASL tagging plane. Specifically,

the tagging plane was always placed in a location at which the inter-

nal and external carotid arteries were not twisting, that is, travelling

orthogonal to the Head-Foot axis. There were no strokes/neurological

abnormalities/incidental findings in any of the participants.

MRI data analysis

MRI data were processed using the publicly available nii_preprocess

pipeline, which has been used in numerous prior publications.10 For

the current study, we were interested in examining differences in CBF

between participants diagnosed with COVID-19 and a healthy, age-

and sex-matched control sample. Using the ASL sequences described

above, CBF data (perfusion-weighted images and calibrated perfusion-

weighted images) were computed using FSL’s Bayesian Inference for

Arterial Spin Labeling (BASIL) tool.11,12 This tool was developed to

specifically support processing of the 6-PSL pseudocontinuous ASL

sequencesdevelopedbyOxford andused in the current study.Weused

BASIL’s recommended (default) preprocessing settings as described in

theASL “white paper.”13 BASIL output (ie, calibratedCBF volumemaps

in a standard space) was saved. Mean CBF values for GM, WM, and

the whole brain were calculated by averaging CBF values of standard

space-normalized CBF image values falling within GM andWMmasks

(90% tissue match probability), constructed using FSL’s FAST segmen-

tation algorithm applied to the Montreal Neurological Institute brain

template.14 GM andWM regions of interest (ROIs) were derived from

the Johns Hopkins University’s (JHU) whole brain atlas. The JHU atlas

has 189 total brain regions (https://github.com/neurolabusc/NiiStat/

blob/master/roi/jhu.txt).
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Statistical analysis

Demographics including age, sex, and race as well as the investigated

additional covariates including hypertension, diabetes, smoking sta-

tus, current alcohol use, and Montreal Cognitive Assessment (MOCA)

were assessed. The COVID-19 and control groups were compared

using independent-sample t-test for continuous variables and Fisher’s

exact test for categorical variables. All data analysis for this study was

completed using SAS version 9.4 (SAS institute Inc., Cary, NC).

Data files created using nii_preprocess10 were interrogated using

our freely available machine-learning-based analysis tool, NiiStat.15

Briefly, we used support vector machine (SVM) learning to identify

differences between COVID-19 and control groups and evaluate our

ability topredict groupmembershipusinga leave-one-out approach (ie,

our model was trained on the data of all individuals but one, and then

attempted to identify group membership of the left-out individual).16

We also used support vector regression (SVR)17 to evaluate the rela-

tionship between regional GM and WM CBF with COVID-19 severity

levels in the COVID-19 group.

Data availability and access statement

The Principal Author has full access to the data used in the analyses

in the manuscript. The authors take full responsibility for the data,

the analyses and interpretation, and the conduct of the research; they

have full access to all of the data; and they have the right to publish

any and all data, separate and apart from the guidance of any sponsor.

Anonymized data not published within this article will be made avail-

able by request from any qualified investigator. Related documents

such as study protocol and statistical analysis plan will be shared on

reasonable requestwithin 2 years of publication. The datawill bemade

available for a similar period, and criteria for accessing data requires

a written request to the ABC@USC investigator from all potential

investigators.

RESULTS

A total of 56 participants were selected from the cohort of the

ABC@USC study who consented and completed the MRI CBF mea-

surement and MOCA testing, including 28 cases with mild COVID-

19 infection (mean age ± standard deviation [SD] = 44.3 ± 19.5,

89% women) and 28 age- and sex-matched controls (mean age ±

SD = 44.9 ± 19.8, 89% women), enrolled prior to the COVID-19

pandemic. Data from healthy adults were collected between August

2019 and March 2020, while data from participants with COVID-

19 were collected between October 2020 and March 2021. Key

demographic and health variables for the two groups are shown in

Table 1 and self-reported vascular risk factors for cases and controls at

baseline are shown in Table 1. The proportion of subjects with hyper-

tension, diabetes, smoking, and alcohol use was similar across cases

and controls. The MOCA score was similar (p = .52) between cases

TABLE 1 Baseline characteristics.

COVID-19mild

infection (N= 28) Control (N= 28)

p-
value

Age 44.3± 19.5 (20, 70) 44.9± 19.8 (21, 69) .90

Sex Women= 25 (89%) Women= 25 (89%) 1.0

Men= 3 (11%) Men= 3 (11%) 1.0

Race White= 24 White= 24 .56

Black= 4 Black= 3 .56

Hispanic= 5 Hispanic= 1 .56

Hypertension 4 (14%) 5 (18%) .72

Diabetes 1 (3%) 1 (3%) 1.0

Smoking 1 (3.6%) 2 (7.2%) .55

Alcohol abuse 0 (0%) 0 (0%) 1.0

MOCA score

values

27.71± 1.8 (24, 30) 27.32± 2.6 (19, 30) .52

Note: Values are expressed as mean ± standard deviation, or number of

subjects. Percentage or range is shown in parentheses.

Abbreviations: COVID-19, Coronavirus Disease 2019; MOCA, Montreal

Cognitive Assessment;N, number of subjects.

TABLE 2 Cerebral blood flow results.

COVID-19mild

infection

(N= 28)

Control

(N= 28) p-value

CBF (mL/100 g/min)

Whitematter 29.3± 2.6 31.0± 1.6 .03

Graymatter 64.2± 8.9 67.6± 6.0 .10

Whole brain 46.7± 5.6 49.3± 3.7 .05

Note: All data are presented asmean± standard deviation, and p-values are
reported for independent-sample t-tests (two-tailed). Listed p-values are
basedona series of three, planned, independent-sample t-tests (two-tailed).
Abbreviations: CBF, cerebral blood flow; COVID-19, Coronavirus Disease

2019;N, number of subjects.

(mean ± SD = 27.7 ± 1.8) and the controls (mean ± SD = 27.3 ± 2.6).

CBF in the whole brain (46.7 ± 5.6 vs. 49.3 ± 3.7, p = .05) and WM

(29.3 ± 2.6 vs. 31.0 ± 1.6, p = .03) was noted to be significantly lower

in the COVID-19 cases compared with control group (Table 2). Blood

flow in the GMwas not significantly different between the two groups,

although there was a slight trend toward lower CBV in the COVID-19

group, GM (64.2 ± 8.9 vs. 67.6 ± 6.0, p = .10). The differences in the

meanwere statistically significant inWM (p= .03) andwere of border-

line significance (p= .05) in the whole brain. Representative calibrated

CBFmaps from threeparticipants each inCOVID-19and control group

are shown in Figure 1.

Univariate analyses of the CBF differences between COVID-19 and

controls using all GM and WM ROIs from the JHU whole brain atlas

with p< .05 are depicted in Table 3. ROIs in the GM/WMand left/right

side of the brain are depicted. Areas where the COVID-19 sample

had significantly lower CBF than the control group in the univariate

analysis are depicted by z-score color-coded map in Figure 2. A list
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4 CBFANDCOVID-19

F IGURE 1 Representative calibrated CBFmaps from three participants in each group. These data were generated using the Bayesian
Inference for Arterial Spin Labelling processing pipeline. Color bar values represent mL/100 g/minute of cerebral blood flow.

F IGURE 2 Areas where the COVID-19 group had significantly lower cerebral blood flow than the control group.White numbers indicate axial
slice location. The color bar represents the z-scores for this contrast. Only statistically significant regions are shown. Data are derived from
univariate analysis. R, right; L, left.
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TABLE 3 Univariate results showing CBF differences between the
control and COVID-19 groups.

Graymatter

Left

hemisphere

Posterior inferior temporal gyrus −4.57

Inferior temporal gyrus −4.51

Middle temporal gyrus −3.81

Entorhinal cortex −3.15

Globus pallidus −3.1

Subgenual anterior cingulate −3.06

Right

hemisphere

Subgenual anterior cingulate −3.58

Subcallosal anterior cingulate −3.4

Middle fronto-orbital gyrus −3.24

Middle frontal gyrus −3.18

Whitematter

Left

hemisphere

Lenticular fasciculus −4.17

Genu of corpus callosum −4.07

Posterior thalamic radiation −3.62

Optic tract −3.42

Middle cerebellar peduncle −3.36

Inferior cerebellar peduncle −3.26

Superior cerebellar peduncle −3.25

Fornix −3.19

Sagittal stratum −3.19

Superior longitudinal fasciculus −3.15

Anterior commissure −3.15

Cingulum −3.09

Retrolenticular internal capsule −3.07

Right

hemisphere

Lenticular fasciculus −3.85

Genu of corpus callosum −3.79

Olfactory radiation −3.57

Optic tract −3.37

Fornix −3.27

Anterior corona radiata −3.07

Retrolenticular internal capsule −3.07

Middle cerebellar peduncle −3.01

Sagittal stratum −2.99

Note: These values of gray matter and white matter regions are from the

Johns Hopkin’s University atlas. All listed results are ps < .05, permuta-

tion corrected (1000 permutations). All regions indicated lower CBF in the

COVID-19 group.

of regions most informative for the SVM model when classifying

participants into control or COVID-19 groups is depicted in Table 4.

Controls were identified with 77.4% accuracy, while COVID-19 par-

ticipants were identified with 85.2% accuracy (overall classification

p < .0001). Top 10 areas predictive of control group membership in

the SVM model are also depicted in a color-coded map (Figure 3A),

whereas the 10 areas predictive of COVID-19 group membership in

TABLE 4 List of regionsmost informative for the support vector
machinemodel when classifying participants into control or
COVID-19 groups.

Top 10 regions informative of control groupmembership

Region Featureweight

RightMeynert nucleus 3.21

Right pontine crossing tract 2.99

Right angular gyrus 2.38

Right uncinate fasciculus 2.30

Left amygdala 2.24

Right superior parietal gyrus 1.98

Left inferior frontal gyrus (pars opercularis) 1.93

Right precuneus 1.76

Left supramarginal gyrus 1.76

Left pontine crossing tract 1.74

Top 10 regions informative of COVID-19 groupmembership

Region Featureweight

Right middle fronto-orbital gyrus −3.28

Right middle frontal gyrus −3.12

Left lenticular fasciculus −3.06

Left inferior temporal gyrus −2.43

Left middle fronto-orbital gyrus −2.05

Left anterior commissure −1.98

Right middle cerebellar peduncle −1.95

Left superior cerebellar peduncle −1.93

Right anterior commissure −1.91

Note: Controls were identified with 77.4% accuracy, while COVID-19 sub-

jects were identified with 85.2% accuracy (overall classification p< .0001).

the SVMmodel are depicted in a color-codedmap (Figure 3B). Of note,

the COVID-19 membership group did show blood flow abnormality

predominantly in the frontal lobe, including the olfactory tubercle

region.

In an attempt to identify a relationship between CBF and symptom

severity in the COVID-19 sample, we conducted a separate SVRmodel

using only participants in that group. Using this model, CBF data were

also able to significantly predict COVID-19 severity after controlling

for age (R2 = 0.1, p= .046). Table 5 shows the top 20 areas predictive of

severity in the SVRmodel.

DISCUSSION

Changes in CBF have been reported because of viral infections affect-

ing the CNS. While originally thought to be a respiratory virus,

neurological and long-term symptoms of COVID-19 implicate disrup-

tion to the central and peripheral nervous system. In the current

study, we observed lower overall CBF in COVID-19-recovered individ-

uals compared to age- and sex-matched control participants. Further
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6 CBFANDCOVID-19

F IGURE 3 (A) Top 10 areas predictive of control groupmembership in the support vector machine (SVM)model (classification
accuracy= 77.4%). (B) Top 10 areas predictive of COVID-19 groupmembership in the SVMmodel (classification accuracy= 85.2%).White
numbers indicate axial slice location. The color bar represents z-scores for this contrast. Only statistically significant regions are shown. R, right; L,
left.

analysis revealed robust differences in cerebral perfusion between

the two groups in specific brain areas (frontal, temporal, and cingu-

late gyri as well as the basal ganglia) and WM tracts (including the

lenticular fasciculus, cerebellar peduncles and others) (see Table 3).

While severe cases of COVID-19 have resulted in millions of deaths,

it is also important to understand the effects of surviving mild-to-

moderate COVID-19 infection, which makes up approximately 80% of

total cases.18 Even mild cases of COVID-19 can have long-term conse-

quences that have a large cumulative effect on a population by altering

diet, work, and ability to socially function. To date, most neurobiologi-

cal studiesofCOVID-19have focusedonbrain changes associatedwith

severe cases (ie, hospitalizedor autopsy), and theyhave revealed ample

evidence for neurological effects that may be related to brain inflam-

mation and microbleeds,19 WMhyperintensities,20 or neurotropism21

or have described the effects of COVID-19 on psychological factors,

such as social isolation or posttraumatic stress.21,22 The current find-

ings suggest that brain changes are not restricted to severe cases,

with survivors of mild-to-moderate COVID-19 displaying altered

CBF when compared to matched controls. Future studies should

seek to determine if these alterations are associated with long-term
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TABLE 5 List of regionsmost predictive of COVID-19 severity in
the support vector machinemodel.

Top 10 regions where greater CBFwas associatedwith greater

COVID-19 severity

Region Featureweight

Right ansa lenticularis 1.91

Right hypothalamus 1.83

Left mammillary body 1.75

Left ansa lenticularis 1.67

Right genu of corpus callosum 1.67

Left corticospinal tract 1.59

Right body of corpus callosum 1.57

Left globus pallidus 1.48

Left pons 1.41

Right cingulum 1.41

Top 10 regions where less CBFwas associatedwith greater COVID-19

severity

Region Featureweight

Left superior parietal gyrus −2.06

Left middle frontal gyrus −2.04

RightMeynert nucleus −1.99

Left posterior middle temporal gyrus −1.94

Left superior temporal gyrus −1.83

Right nucleus accumbens −1.81

Right pole of superior frontal gyrus −1.76

LeftMeynert nucleus −1.76

Left superior frontal gyrus (prefrontal cortex) −1.69

Right middle occipital gyrus −1.51

Note: Values controlled for age (R2 = 0.1, p= .046).

cognitive, behavioral, or health-related outcomes. These findingsmake

sense in light of the known sequelae of COVID-19 and are discussed

below. Observed abnormalities in perfusion of the basal ganglia and

cerebral peduncles, which are both implicated in balance23,24 and

dizziness,25–27 may be related to neurologic manifestations of dizzi-

ness in COVID-19.28,29 Similarly, changes in perfusion of the inferior

frontal and olfactory tubercle, which are known to be related to odor

detection and interpretation,30,31 may be related to alterations in the

sense of smell reported in COVID-19.28 Finally, changes in CBF iden-

tified in the frontal and temporal lobes and anterior cingulate, which

are critical to high-level cognitive skills such as executive function32

and languageprocessing,33 maybe related to reports of brain fog34 and

reports of potentially impaired speech processing35 in COVID-19.

One interesting finding in this study is the high degree of accuracy

with which our SVM-based predictive models were able to discrimi-

nate between participants with COVID-19 (∼85% accuracy) and those

never infected with COVID-19 (77% accuracy). To our knowledge, this

is the first study that has attempted to predict COVID-19 infection

status using anentirely brain-based approach.While other studies con-

ducted in clinical populations have validated the approach we used

here (and additionally used it to predict continuous variables), similar

predictive models for other similarly sized data sets do not typically

achieve the same high level of accuracy we observed in the current

study.15,16,17,36–39 As such, the current experiment is unique in that it

identifies a robust, new biomarker for COVID-19 that follows known

neurological and cognitive sequelae of infection. It would be interest-

ing to apply this model to additional—perhaps larger—MRI data sets

acquired in COVID-19, as well as to examine longitudinal changes in

CBF associated with successful and impaired recovery.

While the results of this study are clear, the physiological mech-

anisms underlying the reported differences in CBF have yet to be

established. To date, there is not a strong consensus regarding the

relationship between vascular function and COVID-19 infection. One

study reported blunted peripheral, but not cerebral, vasodilator func-

tion in long-haul COVID-19 patients. Information reported from other

behavioral and brain imaging studies supports a link between COVID-

19 and changes in blood flow, particularly in the brain. Campen and

colleagues, for example, used the clinical tilt-test and extracranial

Doppler to identify alterations in cerebral CBF in a sample of par-

ticipants with COVID-19, concluding that CBF may be altered in

this population.40 Another recent paper describes alterations in both

regional and whole-brain CBF as a result of mild to severe COVID-

19 infections in hospitalized individuals.41 This research reported a

moderate correlation between magnitude of brain changes, COVID-

19 severity, and inflammatory markers including C-reactive protein,

procalcitonin, and interleukin-6. While we did not measure inflamma-

tory markers in the present study, we do report changes in CBF in

a much milder group of COVID-19 infection than previous studies.

We were also able to find a correlation between regional CBF and

severity of COVID-19 in a nonhospitalized population. Interestingly,

this model indicated that COVID-19 severity could be predicted by

higher CBF in some areas, and lower CBF in other areas, stressing

the fact that patterns of dysfunction—rather than global dysfunction—

may be useful biomarkers of COVID-19 severity. While these results

are not particularly robust (see limitations section below), and are

not further discussed here, they do suggest the potential of using

MRI-based metrics as an objective measures of brain function that

may ultimately prove useful in prognosis of long-term neurological

complications known to exist following COVID-19 even in mild cases

(which include symptoms such as chronic fatigue, impaired cognition,

dizziness, and alterations to the sense of smell/taste).

This study has some limitations that should be considered when

interpreting the findings. We did not have information on duration

and severity of COVID-19 infection. While we did find a significant

correlation between region-specific CBF and COVID-19 severity in

the current study, this effect was not particularly strong (R2 = 0.1),

corroborated by the low feature weights (Table 5) in the SVR analy-

sis that predicts COVID-19 severity based on CBF data, and should

be interpreted cautiously. In theory, we could improve this result by

increasing our sample size, including hospitalized patients (extreme

severity), or using a more sensitive, continuous (ie, noncategorical)

measure of COVID-19 severity. Measuring severity via the immune
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response or perhaps indirectly via quantification of inflammatory

markers (which were not assessed in the current study) may also

prove fruitful. Another important consideration is that participants

with COVID-19 were scanned after the pandemic had officially been

ongoing for months. Undoubtedly, the COVID-19 pandemic, and asso-

ciated changes in diet, exercise, social interaction, mental health, and

so forth, all of which are known to have effects on the brain, could be

responsible for differences reported in the current study. With these

considerations, it is possible to argue that our results speak to changes

associatedwith the pandemic and COVID-19 infection. This would still

be interesting and disentangling the effects of these two causes is cer-

tainly a topic for future, large-scale, preferably longitudinal, studies.

Our participants, who were measured at the beginning of the pan-

demic, would have had theDelta strain of COVID-19, and other strains

may have different effects on the brain. Finally, the fact that our sam-

ple consistedmainly ofwomen (89%) limits our ability to generalize our

results tomen.

Despite these limitations, we report lower WM CBF, as well as

widespread regional CBF changes identified using quantitativeMRI, in

mild COVID-19 patients. Further studies are needed to validate this

newly identified COVID-19 imaging marker and determine whether

CBF changes are related to changes in WM tracts and connectivity in

COVID-19 patients.
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