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INTRODUCTION:When faced with the outbreak
of a novel epidemic such as coronavirus dis-
ease 2019 (COVID-19), rapid responsemeasures
are required by individuals, aswell as by society
as a whole, to mitigate the spread of the virus.
During this initial, time-critical period, neither
the central epidemiological parameters nor the
effectiveness of interventions such as cancella-
tion of public events, school closings, or social
distancing is known.

RATIONALE: As one of the key epidemiological
parameters, we inferred the spreading rate l
from confirmed SARS-CoV-2 infections using
the example of Germany. We apply Bayesian
inference based onMarkov chainMonte Carlo
sampling to a class of compartmental models
[susceptible-infected-recovered (SIR)]. Our anal-
ysis characterizes the temporal change of the
spreading rate and allows us to identify po-
tential change points. Furthermore, it enables
short-term forecast scenarios that assume var-
ious degrees of social distancing. A detailed
description is provided in the accompanying
paper, and the models, inference, and forecasts
are available on GitHub (https://github.com/
Priesemann-Group/covid19_inference_forecast).
Although we apply the model to Germany,
our approach can be readily adapted to other
countries or regions.

RESULTS: In Germany, interventions to contain
the COVID-19 outbreak were implemented in
three steps over 3weeks: (i) Around9March2020,
large public events such as soccer matches
were canceled; (ii) around 16 March 2020,
schools, childcare facilities, and many stores
were closed; and (iii) on 23 March 2020, a far-
reaching contact ban (Kontaktsperre) was im-
posed by government authorities; this included
the prohibition of even small public gatherings
as well as the closing of restaurants and all
nonessential stores.
From the observed case numbers of COVID-19,

we canquantify the impact of thesemeasures on
the disease spread using change point analysis.
Essentially, we find that at each change point the
spreading rate l decreased by ~40%. At the first
change point, assumed around 9March 2020, l
decreased from 0.43 to 0.25, with 95% credible
intervals (CIs) of [0.35, 0.51] and [0.20, 0.30],
respectively. At the second change point, as-
sumed around 16 March 2020, l decreased to
0.15 (CI [0.12, 0.20]). Both changes in l
slowed the spread of the virus but still implied
exponential growth (see red and orange traces
in the figure).
To contain the disease spread, i.e., to turn

exponential growth into a decline of new cases,
the spreading rate has to be smaller than the
recovery rate m = 0.13 (CI [0.09, 0.18]). This

critical transition was reached with the third
change point, which resulted in l = 0.09 (CI
[0.06, 0.13]; see blue trace in the figure), assumed
around 23 March 2020.
From the peak position of daily new cases,

one could conclude that the transition from
growth to decline was already reached at the
end of March. However, the observed tran-
sient decline can be explained by a short-
term effect that originates from a sudden
change in the spreading rate (see Fig. 2C in
the main text).
As long as interventions and the concurrent

individual behavior frequently change the
spreading rate, reliable short- and long-term

forecasts are very diffi-
cult. As the figure shows,
the three example sce-
narios (representing the
effects up to the first, sec-
ond, and third change
point) quickly diverge from

each other and, consequently, span a consid-
erable range of future case numbers.
Inference and subsequent forecasts are fur-

ther complicated by the delay of ~2 weeks be-
tween an intervention and the first useful
estimates of the new l (which are derived from
the reported case numbers). Because of this
delay, any uncertainty in the magnitude of
social distancing in the previous 2 weeks can
have a major impact on the case numbers in
the subsequent 2 weeks. Beyond 2 weeks, the
case numbers depend on our future behavior,
for which wemustmake explicit assumptions.
In sum, future interventions (such as lift-
ing restrictions) should be implemented cau-
tiously to respect the delayed visibility of their
effects.

CONCLUSION: We developed a Bayesian frame-
work for the spread of COVID-19 to infer central
epidemiological parameters and the timing and
magnitude of intervention effects. With such an
approach, the effects of interventions can be
assessed in a timely manner. Future interven-
tions and lifting of restrictions can bemodeled
as additional change points, enabling short-
term forecasts for case numbers. In general,
our approachmay help to infer the efficiency
of measures taken in other countries and in-
formpolicy-makers about tightening, loosening,
and selecting appropriate measures for contain-
ment of COVID-19.▪
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Bayesian inference of SIR model parameters from daily new cases of COVID-19 enables us to assess
the impact of interventions. In Germany, three interventions (mild social distancing, strong social
distancing, and contact ban) were enacted consecutively (circles). Colored lines depict the inferred models
that include the impact of one, two, or three interventions (red, orange, or green, respectively, with individual
data cutoff) or all available data until 21 April 2020 (blue). Forecasts (dashed lines) show how case numbers
would have developed without the effects of the subsequent change points. Note the delay between intervention and
first possible inference of parameters caused by the reporting delay and the necessary accumulation of evidence
(gray arrows). Shaded areas indicate 50% and 95% Bayesian credible intervals.

ON OUR WEBSITE
◥

Read the full article
at https://dx.doi.
org/10.1126/
science.abb9789
..................................................

on N
ovem

ber 8, 2020
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

https://github.com/Priesemann-Group/covid19_inference_forecast
https://github.com/Priesemann-Group/covid19_inference_forecast
http://science.sciencemag.org/


RESEARCH ARTICLE
◥

CORONAVIRUS

Inferring change points in the spread of COVID-19
reveals the effectiveness of interventions
Jonas Dehning1*, Johannes Zierenberg1*, F. Paul Spitzner1*, Michael Wibral2, Joao Pinheiro Neto1,
Michael Wilczek1,3*, Viola Priesemann1,3,4*†

As coronavirus disease 2019 (COVID-19) is rapidly spreading across the globe, short-term modeling
forecasts provide time-critical information for decisions on containment and mitigation strategies.
A major challenge for short-term forecasts is the assessment of key epidemiological parameters
and how they change when first interventions show an effect. By combining an established epidemiological
model with Bayesian inference, we analyzed the time dependence of the effective growth rate of new
infections. Focusing on COVID-19 spread in Germany, we detected change points in the effective growth
rate that correlate well with the times of publicly announced interventions. Thereby, we could quantify the
effect of interventions and incorporate the corresponding change points into forecasts of future scenarios
and case numbers. Our code is freely available and can be readily adapted to any country or region.

D
uring the initial outbreak of an epidemic,
reliable short-term forecasts are key to
estimate medical requirements and ca-
pacities and to inform and advise the
public and decision makers (1). During

this initial phase, three tasks are important
to provide time-critical information for crisis
mitigation: (i) establishing central epidemio-
logical parameters, such as the basic reproduc-
tion number, that can be used for short-term
forecasting; (ii) simulating the effects of differ-
ent possible interventions aimed at the mitiga-
tion of the outbreak; and (iii) estimating the
actual effects of the measures taken not only
to make rapid adjustments but also to adapt
short-term forecasts. Addressing these tasks
is challenging because of the large statistical
and systematic errors that occur during the
initial stages of an epidemic, when case num-
bers are low. This is further complicated by the
fact that mitigation measures are taken rapidly
while the outbreak unfolds, but they take effect
only after an unknown delay. To obtain rea-
sonable parameter estimates for short-term
forecasting and policy evaluation despite these
complications, any prior knowledge available
needs to be integrated intomodeling efforts to
reduce uncertainties. This includes knowledge
about basic mechanisms of disease transmis-
sion, recovery, and preliminary estimates of
epidemiological parameters from other coun-
tries or from closely related pathogens. The in-
tegration of prior knowledge, the quantitative

assessment of the remaininguncertainties about
epidemiological parameters, and the principled
propagation of these uncertainties into fore-
casts is the domain of Bayesian modeling and
inference (2, 3).
We draw on an established class of models

for epidemic outbreaks: The susceptible-
infected-recovered (SIR) model (4–7) specifies
population compartments and the rates atwhich
they change (susceptible people becoming infec-
tious and infectious people recovering). This
simple model can be formulated in terms of
coupled ordinary differential equations (in
mean field), which enable analytical treat-
ment (8, 9) or fast evaluation (ideally suited for
Bayesian inference). Accordingly, SIR-likemod-
els have been used to model epidemic spreads,
from Bayesian Markov chain Monte Carlo
(MCMC) parameter estimation (10–12) to de-
tailed scenario discussions (13–16). This family
of models has played a dominant role in the
analyses of the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) pandemic,
from inference (17–19) through scenario fore-
casting (20–27) to control strategies (28, 29).
Here, we combined the SIR model (and gen-

eralizations thereof) with Bayesian parameter
inference and augmented the model with a
time-dependent spreading rate. The time
dependence was implemented as potential
change points in the spreading rate, which we
assume to be driven by governmental interven-
tions and the associated change of individual
behavior (nonpharmaceutical interventions).
On the basis of three distinct measures taken
in Germany, we detected three correspond-
ing change points in the reported COVID-19
case numbers. By 1 April 2020, we had reported
evidence for the first two change points and
predicted the third (30). Now, with data until
21 April 2020, we have evidence for all three

change points. First, the spreading rate de-
creased from0.43 (with 95%credible interval, CI
[0.35,0.51]) to 0.25 (CI [0.20,0.30]). This inferred
decrease was initiated around 7 March 2020
(CI [3,10]) and matches the timing of can-
cellation of large public events such as trade
fairs and soccer matches. Second, the spread-
ing rate decreased further to 0.15 (CI [0.12,0.20]).
This decrease was initiated around 16March 2020
(CI [14,18]) and matches closure of schools,
childcare facilities, andnonessential stores.Third,
the spreading rate decreased further to 0.09
(CI [0.06,0.13]). This decrease was initiated
around 24March 2020 (CI [21,26]) andmatches
the strict contact ban (including the closing of all
restaurants and nonessential stores), which was
announced on 22March 2020.Whereas already
the first two change points strongly slowed the
spread of the virus, the third change point can
be associated with the start of a sustained de-
cline in daily new cases.
Our framework is designed to infer the ef-

fectiveness of past measures and to explore po-
tential future scenarios, alongwith propagating
the respective uncertainties. In the following,
we demonstrate the potential impact of timing
andmagnitude of change points and report our
inference about the three past governmental
interventions in Germany. Our framework can
be readily adapted to any other country or re-
gion. The code (already including data sources
from many other countries) and figures are
available on GitHub (31).

Basic inference of central epidemiological
parameters during the initial phase
of the COVID-19 outbreak in Germany

To assess the general effect of different pos-
sible interventions on the spread of COVID-
19 in Germany, we first focused on the initial
phase of the outbreak, when no serious mit-
igation measures had been implemented. In
the absence of interventions, an epidemic out-
break can be described by SIR models with a
constant spreading rate (see the materials and
methods). In Germany, the first serious inter-
ventions occurred around 9 March 2020 and
affected the case reports after an observation
delay [a combination of incubation period with
a median of 5 to 6 days (32)] and a test delay
(the time until a doctor is visited plus test eval-
uation time, which we assumed to be ~2 to
3 days, combined). Thus, to infer central epide-
miological parameters, we considered the initial
phase to be 2March 2020 to 15March 2020. The
central epidemiological parameters estimated
herewill also be estimated under the fullmodel
with change points on the data records up to
21 April 2020, allowing for a consistency check.
We performed Bayesian inference for the

central epidemiological parameters of an SIR
model using MCMC sampling (Fig. 1). The
central parameters are the spreading rate l,
the recovery rate m, the reporting delay D, and
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the number of initially infected people I0.
We chose informative priors based on avail-
able knowledge for l, m, and D, and we chose
uninformative priors for the remaining pa-
rameters (see the materials and methods).
Also, we intentionally kept the informative
priors as broad as possible so that the data
would constrain the parameters (Fig. 1).
As median estimates, we obtained l = 0.41,

m = 0.12, D = 8.6, and I0 = 19 (see Fig. 1, C to H,
for the posterior distributions and the 95% CIs).
Converting to the basic reproduction num-
ber R0 = l/m, we found a median R0 = 3.4 (CI
[2.4,4.7]), which is consistent with previous
reports finding median values between 2.3
and 3.3 (18, 33, 34). Overall, the model exhib-
ited good agreement with new cases (Fig. 1A)
and cumulative cases (Fig. 1B), both of which
show the expected exponential growth (linear
in log-lin plot). The observed data were clearly
informative about l, I0, and s, as indicated by
the difference between the priors (gray line)
and posteriors (histograms) in Fig. 1, D to F.
However, m and D were largely determined
by our prior choice of parameters (histograms
match the gray line in Fig. 1, C and H). This

is to be expected for the initial phase of an
epidemic outbreak, which is dominated by
exponential growth.
To quantify the impact of possible interven-

tions, we concentrated on the effective growth
of active infections before and after the inter-
vention. As long as the number of infections
and recoveries are small compared with the
population size, the number of active infec-
tions can be approximated by an exponential
growth with effective growth rate l* = l – m
(see the materials and methods). As a con-
sequence, l and m cannot be estimated inde-
pendently. This was further supported by a
systematic scan of the model’s log-likelihood in
the (l – m) space,which showedanequipotential
line for the maximum likelihood (Fig. 1I). This
strongly suggests that the growth rate l* is the
relevant free parameter with amedian l* = 28%
(Fig. 1G). The control parameter of the dynamics
in the exponential phase is thus the (effective)
growth rate: If the growth rate is larger than
zero (l > m), then case numbers grow exponen-
tially; if, however, the growth rate is smaller
than zero (l < m), then recovery dominates and
new cases decrease. The two different dy-

namics (supercritical and subcritical, respec-
tively) are separated by a critical point at l* =
0 (l = m) (35).

Magnitude and timing of interventions matter
for the mitigation of the outbreak

To simulate the effect of different possible in-
terventions, we modeled the effects of inter-
ventions as change points in the spreading
rate (see the materials and methods). We con-
sidered different, hypothetical interventions
after the initial phase to show that both the
amount of change in behavior (leading to a
change in spreading rate l; Fig. 2A) and the
exact timing of the change (Fig. 2B) determine
future development. Hypothetical interven-
tions build on the inferred parameters from
the initial phase (in particular median l0 =
0.41 and median m = 0.12; Fig. 1) and were im-
plemented as change points in the spreading
rate from the inferred l0 to a new value l1.
With such a change point, we modeled three
potential scenarios of public behavior.

(i) No social distancing

Public behavior is unaltered and spread con-
tinues with the inferred rate (l1 = l0 with
median l1 = 0.41 > m).

(ii) Mild social distancing

The spreading rate decreases to 50% (l1 = l0/2
with median l1 = 0.21 > m). Although people
effectively reduce the number of contacts by a
factor of two in this second scenario, the total
number of reported cases continues to grow
alongside scenario (i) for the time period of
the reporting delay D (median D = 8.6 from
initial phase; see below for amore constrained
estimation). Also, we still observe an exponen-
tial increase of new infections after the inter-
vention becomes effective, because the growth
rate remains positive, l1* = l1 –m > 0.

(iii) Strong social distancing

Here, the spreading rate decreases to 10% (l1 =
l0/10 with median l1 = 0.04 < m). The as-
sumptions here are that contacts are severely
limited, but even when people stay at home as
much as possible, some contacts are still un-
avoidable. Even under such drastic policy
changes, no effect is visible until the reporting
delay D is over. Thereafter, a quick decrease in
daily new infections manifests within 2 weeks
(delay plus change point duration), and the
total number of cases reaches a stable plateau.
Only in this scenario (iii) a plateau is reached,
because here the growth rate becomes nega-
tive, l1* < 0, which leads to decreasing num-
bers of new infections.

Furthermore, the timing of an intervention
matters: Apart from the strength of an inter-
vention, its onset time has great impact on
the total case number (Fig. 2B). For example,
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Fig. 1. Inference of central epidemiological parameters of the SIR model during the initial onset
period, 2 to 15 March 2020. (A) The number of new cases and (B) the total (cumulative) number of cases
increase exponentially over time. (C to H) Prior (gray) and posterior (orange) distributions for all model
parameters: estimated spreading rate l, recovery rate m, and reporting delay D between infection date
and reporting date; number of cases I0 at the start of the simulation; scale-factor s of the width of the
likelihood distribution; and the effective growth rate l* = l – m. (I) Log-likelihood distribution for different
combinations of l and m. A linear combination of l and m yields the same maximal likelihood (black line).
White rectangle indicates that the inference did not converge.
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focusing on the strong intervention (iii), by
which a stable plateau is reached, the effect of
advancing or delaying the change point by just
five days leads to more than a threefold dif-
ference in cumulative cases.
Whereas we found that the timing of an in-

tervention has a great effect on case numbers,
the duration over which the change takes place
has only minor effect if the intervals of change
are centered around the same date. In Fig. 2C,
we illustrate the adjustment of l0 → l1 for
mild social distancing with durations of 14, 7,
and 1 day(s). The change point duration is a
simple way to incorporate variability in indi-
vidual behavior and is not linked to the report-
ing delay D. As an interesting effect, a sudden
change in the spreading rate can lead to a tem-
porary decrease of new case numbers despite
the fact that the effective growth rate remains
positive at all times.

Change point detection for the spread
of COVID-19 in Germany

Tomodel real-world data, we further refined
the SIR model. We accounted for systematic
variations of case reports throughout theweek
(lower case numbers toward the weekend) by
explicitly modeling a weekly reporting modu-
lation (see the materials and methods). Com-
parisons confirmed that models with this
correction outperformed those without (see
table S2). In the supplemental material, we
further generalize our model to include an

explicit incubation period [as in susceptible-
exposed-infectious-recovered (SEIR)models; fig.
S3] that yields results consistent with our main
model.
We incorporated the effect of nonpharma-

ceutical interventions into our models by in-
troducing flexible change points in the spreading
rate (see thematerials andmethods). During the
COVID-19 outbreak in Germany, governmental
interventions occurred in three stages from
(i) the cancellation of large events with more
than 1000 participants (around 9March 2020),
through (ii) closing of schools, childcare fa-
cilities, andmost stores (in effect 16March 2020),
to (iii) the contact ban and closing of all non-
essential stores (in effect 23 March 2020). The
aim of all these interventions was to reduce
the (effective) growth rate l* = l – m. As soon
as the growth rate becomes notably negative
(l* < 0), the number of daily new cases de-
creases after the respective reporting delay.
Detecting change points in the spreading

rate and quantifying the amount of change as
quickly as possible becomes a central model-
ing challenge when short-term forecasts are
required. To address this challenge, we assumed
an initial spreading rate l0 (the exponential
growth phase; Fig. 1) and up to three potential
change points motivated by German govern-
mental interventions: In our modeling, the
first change point (l0→ l1) is expected around
9 March 2020 (t1) as a result of the official
recommendations to cancel large events. A sec-

ond change point (l1 → l2) is expected around
16 March 2020 (t2), when schools and many
storeswere closed.A third changepoint (l2→l3)
is expected around 23 March 2020 (t3), when
all nonessential stores were closed and a con-
tact ban was enacted. We modeled the behav-
ioral changes that were introduced at these
change points to unfold over a few days (Dti),
but the changes in duration can be partly com-
pensated by changes in the onset time (ti) (see
Fig. 2C, scenarios). We chose priors for all pa-
rameters based on the information available
to us up to 28 March 2020 (see the materials
and methods). In addition, we performed a
sensitivity analysis by usingwider priors in the
supplemental material (figs. S5 to S7 and
table S2), which yielded consistent results. On
28 March 2020, the data were already inform-
ative about the first change point, and thereby
helped to inform our forecast scenarios.
The inferred parameters for the models

with change points are consistent with the
inferred parameters from the exponential on-
set phase (Figs. 1 and 3 and figs. S1 and S2). In
particular, all estimated l0 values frommodels
with multiple change points are compatible
with the value of the model without change
points (during the exponential onset phase,
l0 = 0.41, CI [0.32,0.51], assuming a stationary
l until 15 March 2020; Fig. 1E). Also, the scale
factor s and the number of initial infec-
tions I0 for themodels with change points are
consistent with the initial model inference
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Fig. 2. The timing and effectiveness of interventions strongly affect future
COVID-19 cases. (A) We assume three different scenarios for interventions
starting on 16 March 2020: (i, red) no social distancing, (ii, orange) mild social
distancing, or (iii, green) strict social distancing. (B) Delaying the restrictions has
a major impact on case numbers: strict restrictions starting on 16 March 2020

(green), 5 days later (magenta), or 5 days earlier (gray). (C) Comparison of the
time span over which interventions ramp up to full effect. For all ramps that are
centered around the same day, the resulting case numbers are fairly similar;
however, a sudden change of the spreading rate can cause a temporary decrease
of daily new cases (although l > m at all times; brown).
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during the exponential onset phase (Fig. 1,
D to F).

Models with two or three change points fit
the observed data better

The models with three change points describe
the data better thanmodels with fewer change
points, as indicated by the leave-one-out (LOO)
cross-validation–based Bayesianmodel com-
parison (36) (lowest LOO score in Table 1).
However, the LOO scores of the model with
two and three change points differ by <1 SE.
This originates from an extended duration of
the second change point in the two-change-
point model, which partially captures the ef-
fect of the third intervention. As expected, the
modelswith none or a single change point had
LOO scores that were at least 1 SE higher
(worse) than those of the bestmodels, and we
did not consider them further.
When comparing our inference based on

three change points with the number of con-
firmed cases, we found them to largely match
(Fig. 3, B andC). The dominant periodic change
in the daily new reported cases (Fig. 3B) was
well described by the weekday modulation. In
addition to the periodic change, the daily new
case numbers also reflect the fairly sudden
change of the spreading rate at the change
points (compare Fig. 2 and fig. S4 for the effect

of change points without themodulation). The
cumulative effect of change points manifested
in an overarching decay in new case numbers
that was visible after 5 April 2020 and followed
the third change point (with reporting delay).

Change point detection quantifies the effect
of nonpharmaceutical interventions

Ideally, detected changes can be related to spe-
cific mitigation measures so that one gains in-
sights into the effectiveness of differentmeasures
(Fig. 3). Our model comparison favored the
model with three change points with the fol-
lowing posteriors of the parameters: First, l(t)
decreased from l0 = 0.43 (CI [0.35,0.51]) to l1 =
0.25 (CI [0.20,0.30]). The date of the change point
was inferred to be 7 March 2020 (CI [3,10]),
and this inferred date matches the timing of
the first governmental intervention, which in-
cluded cancellations of large events, as well as
increased awareness. After this first interven-
tion, the (effective) growth rate l*(t) = l(t) – m
decreased by more than a factor of 2, from
median l0 – m = 0.3 to median l1 – m = 0.12,
given that the recovery rate was inferred as
m = 0.13 (CI [0.09,0.18]). At the second change
point, l(t) decreased from l1 = 0.25 to l2 = 0.15
(CI [0.12,0.20]), which is larger than our prior
assumption. The date of this change point was
inferred to be 16 March 2020 (CI [14,18]), and

this inferred date matches the timing of the
second governmental intervention including
closing schools and some stores. After this
second intervention, themedian growth rate
became l*(t) = l2–m =0.02≈0 (CI [0.00, 0.06])
and is thus in the vicinity of the critical point
yet still slightly positive. The first two interven-
tions therebymitigated the spread of COVID-19
in Germany by drastically reducing the growth
rate, but did most likely not lead to a sustained
decline of new infections. A third change point,
when l(t) decreased from l2 = 0.15 to l3 = 0.09
(CI [0.06,0.13]), was inferred on 24 March 2020
(CI [21,26]), and this inferred date matches the
timing of the third governmental intervention
including contact ban and closing of all non-
essential stores. Only after this third interven-
tiondid themedian (effective) growth rate,l*(t) =
l3 – m = –0.03 < 0 (CI [–0.05,–0.02]), become
negative, enabling a sustained decrease in the
number of new infections. In summary, we have
related the change points to the nonpharma-
ceutical interventions to quantify their effect.

Discussion

We have presented a Bayesian approach for
monitoring of the effect of nonpharmaceutical
interventions on the epidemic outbreak of an
infectious disease. Using the example of the
COVID-19 outbreak in Germany, we applied
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Fig. 3. Bayesian analysis
of the German COVID-19
data until 21 April 2020
reveals three change
points that are consistent
with three major govern-
mental interventions.
(A) Time-dependent model
estimate of the effective
spreading rate l*(t).
(B) Comparison of daily new
reported cases and the
model (green solid line for
median fit with 95% CIs,
dashed line for median fore-
cast with 95% CI). Inset,
same data in log-lin scale.
(C) Comparison of total re-
ported cases and the model
[same representation as in
(B)]. (D to F) Priors (gray
lines) and posteriors (green
histograms) of all model
parameters; inset values
indicate the median and
95% CIs of the posteriors.
For the same model with
one or two change points,
please see the correspond-
ing figures in the supple-
mentary materials (figs. S1
and S2 and table S2).
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this approach to infer the central epidemio-
logical parameters and three change points in
the spreading rate from thenumber of reported
cases. We showed that change points in the
spreading rate affect the confirmed case num-
bers with a delay of ~2weeks (median reporting
delayofD=11.4daysplusamedian change point
duration of 3 days). Thereby, we were able to
relate the inferred change points to the three
major governmental interventions inGermany:
In our model with three change points, we
found a clear reduction of the spreading rate
related to each governmental intervention and
the concurring adaptation of individual behav-
ior (Fig. 3), (i) the cancellation of large events
with >1000 participants (around 9March 2020),
(ii) the closing of schools, childcare centers, and
most stores (in effect 16 March 2020), and (iii)
the contact ban and closing of all nonessential
stores (in effect 23 March 2020).
Our results suggest that the full extent of

interventions and the concurring adaptation of
behavior lead to a swift and sustained decrease
of daily new cases. The first two interventions
brought a reduction of the growth rate l* from
30% to 12% and down to 2% (CI [0%, 6%]),
respectively. These numbers still implied
the possibility of exponential growth. Only
with the third intervention did we find that
the epidemic changed from growth to decay.
However, the decay rate of ~–3% (CI [–5%,–
2%]) remained close to zero. Therefore, even
a minor increase in the spreading rate may
again switch the dynamics to the unstable
regime with exponential growth.
We used a formal Bayesian model compar-

ison to validate the presence of change points.
Our model comparison ruled out models with
fewer than two change points (Table 1 and
table S2). Although this may seem trivial, it
has important consequences formaking short-
term forecasts that decision makers rely on.
Demonstrating and quantifying the effect of
past change points can be used to formulate
priors for the effects of future, similar change
points. These priors help to project the effects
of more recent change points into future fore-
casts, even when these change points are not
yet apparent in the reported case numbers.

Consequently, it is important to look out for
and identify potential change points as early
as possible to incorporate them into forecasts.
The detection of change points and their

interpretation depend crucially on an accurate
estimate of the reporting delay D. Therefore,
the validity of its estimate should be evaluated.
In ourmodel,D contains at least three distinct
factors: the biological incubation period (me-
dian 5 to 6 days) (32), an additional delay from
first symptoms to symptoms motivating a test
(1 to 3 days), and a possible delay before test-
ing results come in (1 to 4 days). The sum of
these delays seems compatible with our in-
ferredmedian delay ofD= 11.4 days, especially
given the wide range of reported incubation
periods.
We chose to keep our main model compar-

atively simple because of the small number of
data points initially available during an epi-
demic outbreak. With few data points, only a
limited number of parameters can be effec-
tively constrained. Therefore, we chose to ap-
proximate a time-dependent spreading rate
l(t) by using episodes of constant spreading
rates li that are separated by change points
where a transition occurs. Although we in-
troduced fairly broad priors on the spread-
ing rates, we obtained comparably narrow
posterior distributions for each spreading rate
li (Fig. 3). We additionally evaluated exten-
sions of our main model with three change
points, e.g., by explicitly taking into account
the incubation period (fig. S3). These models
yield consistent results for the three change
points, and all have LOO scores within 1 SE of
each other. Thus, we consider our main model
to be sufficient to describe case numbers in
Germany at present.
Our framework can be easily adapted to

other countries and enables incorporation of
future developments. For other countries, or
for forecasts within smaller communities (e.g.,
federal states or cities), additional details may
become important, such as explicit modeling
of incubation time distributions (17, 37) (i.e.,
as in fig. S3), spatial heterogeneity (17, 21),
isolation effects (20, 37), subsampling effects
hiding undetected cases even beyond the re-

porting delay (38, 39), or the age and contact
structure of the population (26). In countries
where major changes in test coverage are ex-
pected, this will have to be included as well. The
methodology presented here is in principle
capable of incorporating such details. It also
lends itself to modeling of continuous drifts
in the spreading rate, e.g., reflecting reactions
of the public to news coverage of a catastrophic
situation or people growing tired of mitigation
measures. Such further adaptations, however,
can only be performed on a per-country basis
by experts with an intimate knowledge of the
local situation. Our approach provides a solid
and extensible base for this. For Germany,
several developments that occurred after the
time span of the presented analysis should be
included in the model. First, people may have
transiently changed their behavior over the
Easter holidays; second, we expect a series of
change points, aswell as continuous drifts, with
governments trying to ease and calibrate mit-
igationmeasures. Third, extensions to hierarchi-
cal models will enable regional assessments,
e.g., on the level of federal states.
In Germany, following the three major

governmental interventions in March, effective
growth rates remained close to zero and war-
ranted careful consideration of futuremeasures.
With the data available until 21 April 2020, we
estimated an effective growth rate of ~–3% for
the beginning of April; the growth rate re-
mained close to zero—the threshold between
exponential growth or decay. Together with
the delay of ~2 weeks between infection and
case report, a growth rate close to zerowarrants
caution in lifting restrictions for two reasons.
First, lifting restrictions too much will quickly
lead to renewed exponential growth, and
second, we would be effectively blind to this
worsened situation for nearly 2 weeks, during
which time transmissionwould be uninhibited.
This may result in a growth in case numbers
beyond the level that the health system can
cope with, especially if active cases are not
close to zero before lifting restrictions.
In conclusion, our Bayesian approach al-

lows the detection and quantification of the
effect of nonpharmaceutical interventions
and, combined with potential subsequent in-
terventions, the forecasting of future case
number scenarios. Our analysis highlights
the importance of precise timing and magni-
tude of interventions for future case numbers.
It also stresses the importance of including
the reporting delay D between the date of in-
fection and the date of the confirmed case in
themodel. The reporting delayD, togetherwith
the time required to implement interventions,
means that changes in our behavior today can
only be detected in confirmed cases in 2 weeks’
time. This delay, combined with a spreading
rate close to zero, indicates that careful planning
of future measures is essential.
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Table 1. Model comparison showing that the three-change-point model describes the data
best. Shown is the LOO cross-validation for the main models (SIR with weekend correction) and a
different number of change points. Lower LOO scores represent a better match between model and data.

Model LOO score
Effective number of
parameters (pLOO)

Zero change points 927 ± 9 8.31
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

One change point 819 ± 16 13.46
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Two change points 796 ± 17 12.53
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Three change points 787 ± 17 13.42
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .
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Materials and methods
As a basis for our Bayesian inference and the
forecast scenarios, we used the differential
equations of the well-established SIR model.
We also tested the robustness of our results
by means of more sophisticated models, in
particular an SEIR-like model that explicitly
incorporates an incubation period (fig. S3).
Although SIR model dynamics are well un-
derstood in general, here, our main challenge
was to estimate model parameters specifically
for the COVID-19 outbreak and to use them
for forecasting. To that end, we combined a
Bayesian approach to incorporate prior knowl-
edge with MCMC sampling to compute the
posterior distribution of the parameters and
to sample from it for forecasting. Put simply,
we first estimated the parameter distribution
that best described the observed situation,
and then we used many samples from this pa-
rameter distribution to evolve the model equa-
tions and thus forecast future developments.
The data used come from the JohnsHopkins

University Center for Systems Science and
Engineering (JHU CSSE) dashboard (40). The
JHU CSSE provides up-to-date data on COVID-
19 infections, usually a few days ahead of offi-
cial German sources. The exact versions of the
data and code are available at (31). Data were
incorporated until 21 April 2020. Note that
after this cutoff date, additional modeling
of the effects of behavioral changes over the
Easter holidays became necessary.

Simple model: SIR model with stationary
spreading rate

We consider a time-discrete version of the stan-
dard SIRmodel. In short, we assume that the
disease spreads at rate l from the infected pop-
ulation compartment (I) to the susceptible com-
partment (S), and that the infected population
compartment recovers (R) at rate m. This well-
established model for disease spreading can
be described by the following set of (determi-
nistic) ordinary differential equations [see, e.g.,
(5), (6), (20)]. Within a population of size N,

dS

dt
¼ �l

SI

N
dI

dt
¼ l

SI

N
� mI

dR

dt
¼ mI

ð1Þ

During the onset phase of an epidemic, only
a very small fraction of the population is in-
fected (I) or recovered (R), and thus S ≈ N ≫ I
such that S/N ≈ 1. Therefore, the differential
equation for the infected reduces to a simple
linear equation, exhibiting an exponential
growth

dI

dt
¼ ðl� mÞI; solved by IðtÞ ¼ Ið0Þeðl�mÞt

ð2Þ

Because our dataset is discrete in time (Dt =
1 day), we solve the above differential equa-
tions with a discrete time step (dI/dt ≈ DI/Dt),
such that

St � St�1 ¼ �lDt
St�1

N
It�1 ¼: �Inewt

Rt � Rt�1 ¼ mDtIt�1 ¼: Rnew
t

It � It�1 ¼ l
St�1

N
� m

� �
DtIt�1 ¼ Inewt � Rnew

t

ð3Þ
It models the number of all (currently) active

infected people, whereas Inewt is the number of
new infections that will eventually be reported
according to standard World Health Organi-
zation (WHO) convention. We explicitly include
a reporting delay D between new infections
Inewt and newly reported cases (Ct) as

Ct ¼ Inewt�D ð4Þ
We begin our simulations at time t = 0

with I0 infected cases and start including
real-word data of reported cases Ĉ t from day
t > D (see below for a parameterization).
In our model, we do not explicitly incorpo-

rate the inflow of additional infected people
by travel for two reasons. First, we implicitly
model the initial surge of infections with I0.
Second, previous work showed that travel dur-
ing the outbreak has only modest effects on

the dynamics, e.g., travel restrictions in China
merely delayed the exponential spread if not
combined with reductions of spreading (41).

Full model: SIR model with weekly reporting
modulation and change points in spreading rate

Our change point detection builds on a gener-
alization of the simple SIR model with sta-
tionary spreading rate. We now assume that
the spreading rate li, i = 1,…, n, may change at
certain time points ti from li – 1 to li, linearly
over a time window of Dti days. Thereby, we
account for mitigation measures, which were
implemented in Germany step by step. Thus,
the parameters ti, Dti, and li are added to the
parameter set of the simple model above, and
the differential equations are augmented by
the time-varying li.
In addition, we include a weekly modulation

to account for lower case reports around the
weekend, which subsequently accumulate dur-
ing the week. Tomodel the systematic variation
of case reports during the week, we adapt the
newly reported cases by a reporting fraction

Ct ¼ Inewt�D

�
1� f ðtÞ

�
; with

f ðtÞ ¼ ð1� fwÞ � 1�
����sin p

7
t � 1

2
Fw

� �����
� �

ð5Þ
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Table 3. Priors on the model parameters for the SIR model with change points and weekly
reporting modulation.

Parameter Variable Prior distribution

Change points t1 Normal(2020/03/09, 3)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

t2 Normal(2020/03/16, 1)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

t3 Normal(2020/03/23, 1)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Change duration Dti LogNormal[log(3);0:3]
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Spreading rates l0 LogNormal[log(0:4);0:5]
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

l1 LogNormal[log(0:2); 0:5]
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

l2 LogNormal[log(1=8); 0:5]
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

l3 LogNormal[log(1=16);0:5]
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Recovery rate m LogNormal[log(1=8); 0:2]
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Reporting delay D LogNormal[log(8); 0:2]
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Weekly modulation amplitude fw Beta(mean = 0.7, std = 0.17)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Weekly modulation phase Fw VonMises(mean = 0, k = 0.01) (nearly flat)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Initially infected I0 HalfCauchy(100)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Scale factor s HalfCauchy(10)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Table 2. Priors on the model parameters for the SIR model with stationary spreading rate.

Parameter Variable Prior distribution

Spreading rate l LogNormal[log(0:4);0:5]
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Recovery rate m LogNormal[log(1=8); 0:2]
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Reporting delay D LogNormal[log(8Þ;0:2]
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Initially infected I0 HalfCauchy(100)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Scale factor s HalfCauchy(10)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .
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where fw and Fw will also be constrained by
the data.

Estimating model parameters
with Bayesian MCMC

We estimate the set of model parameters q =
{li, ti, m, D, s, I0, fw, Fw} using Bayesian in-
ference with MCMC. The parameter s is the
scale factor for the width of the likelihood
PðĈ t jqÞbetween observed data andmodel (see
below). Our implementation relies on the
Python package PyMC3 (42) with NUTS (No-
U-Turn Sampling) (43) using multiple, inde-
pendent Markov chains. The structure of our
approach is as follows.

Initialization of the Markov chains through
variational inference

The posterior is approximated by Gaussian
distributions ignoring correlations between
parameters through automatic differentiation
variational inference (ADVI) (44), which is im-
plemented in PyMC3. From this distribution,
four starting points for four chains are sampled.

Burn-in phase

Each chainperforms 1000burn-in (tuning) steps
usingNUTS,which are not recorded. This serves
as equilibration to sample from an equilibrium
distribution in the next step.

Sampling phase

Each chain performs 4000 steps, which are used
to approximate the posterior distribution. To
ensure that the chains are equilibrated and sam-
pled from thewhole posterior distribution (ergo-
dicity), we verified that the R-hat statistic is
below 1.05, which is implemented in PyMC3.
The rank-normalized R-hat diagnostic tests for
lack of convergence by comparing the var-
iances within chains and between chains: For
identical within-chain and between-chain var-
iances, R-hat becomes 1, indicating conver-
gence. For well-converged chains, the resulting
samples will describe the real-world data well,
so that consistent forecasts are possible in the
forecast phase.

Forecast using MCMC samples

For the forecast, we take all samples from the
MCMC step and continue time integration ac-
cording to different forecast scenarios. Note
that the overall procedure yields an ensemble
of forecasts as opposed to a single forecast that
would be solely based on one set of (previously
optimized) parameters.

MCMC sampling details

EachMCMC step requires us to propose a new
set of parameters q to generate a (fully deter-
ministic) time series of new infected casesC(q) =
{Ct(q)} of the same length as the observed real-
world data Ĉ ¼ fĈ tg and to accept or reject q.
In our case, the NUTS implementation (in

PyMC3) first proposes a new set of parameters
q basedonanadvancedgradient-basedalgorithm
and subsequently accepts or rejects it such that
the resulting samples reflect the posterior dis-
tribution pðqjĈ ÞºpðĈ jqÞpðqÞ where pðĈ jqÞ
is the likelihood for the data given the pa-
rameters and p(q) is the prior distribution of
the parameters (see below). The likelihood
quantifies the similarity between model out-
come and the available real-world time series.
Here, the likelihood is the product over local
likelihoods

pðĈ t jqÞ ∼ StudentTn¼4ðmean ¼ CtðqÞ;
width ¼ s

ffiffiffiffiffiffiffiffiffiffiffi
CtðqÞ

p Þ;
quantifying the similarity between the model
outcome for one time point t, Ct(q), and the
corresponding real-world data point Ĉ t . We
chose the Student’s t distribution because it
resembles a Gaussian distribution around the
mean but features heavy tails, whichmake the
MCMCmore robust with respect to outliers (45)
and thus reporting noise. The case-number–
dependent width is motivated by observation
noise through random subsampling (38), re-
sulting in a variance proportional to themean.
Our likelihood neglects any noise in the dy-
namic process, because the SIRmodel is deter-
ministic, but could be in principle extended to
incorporate typical demographic noise from
stochastic spreading dynamics (35, 46).

Priors that constrain model parameters

Because short-term forecasts are time criti-
cal at the onset of an epidemic, the available
real-world data are typically not informative
enough to identify all free parameters or to
empirically find their underlying distribu-
tions. We therefore chose informative priors
on initial model parameters where possible
and complemented themwith uninformative
priors otherwise. Our choices are summarized
in Table 2 for the simple model, i.e., the SIR
model with stationary spreading rate for the
exponential onset phase, and in Table 3 for the
full model with change points and are dis-
cussed in the following.

Priors for the simple model (Table 2)

To constrain our simple model, an SIR model
with stationary spreading rate for the expo-
nential onset phase, we chose the following
informative priors. Because of the ambiguity
between the spreading and recovery rate in
the exponential onset phase (see descrip-
tion of the simple model), we chose a narrow
log-normal prior for the recovery rate m ∼
LogNormal[log(1=8); 0:2] with a median re-
covery time of 8 days (20). Note that our im-
plementation of m accounts for the recovery of
infected people and isolationmeasures because
it describes the duration duringwhich a person
can infect others. For the spreading rate, we

assume a broad log-normal prior distribution
l ∼ LogNormal[log(0:4); 0:5] with a median
of 0.4. Thisway, the prior for l – m has amedian
of 0.275 and the prior for the base reproduc-
tion number (R0 = l/m) has a median of 3.2,
consistent with the broad range of previous
estimates (18, 33, 34). In addition, we chose
a log-normal prior for the reporting delay
D ∼ LogNormal½logð8Þ;0:2� to incorporate
both the incubation timebetween 1 and 14 days
with median 5 days (32) plus a delay from
infected people waiting to contact the doctor
and get tested (assumed as 3 days).
The remaining model parameters are con-

strained by uninformative priors, in practice
the half-Cauchy distribution (47). The half-
Cauchy distribution, HalfCauchy(x,b) = 2/
pb[1 + (x/b)2], is essentially a flat prior from
zero to O(b) with heavy tails beyond. There-
by, bmerely sets the order of magnitude that
should not be exceeded for a given parameter.
We chose for the number of initially infected
people in the model (16 days before first data
point) I0 ~ HalfCauchy(100) assuming an or-
der of magnitude O(100) and below. In ad-
dition, we chose the scale factor of thewidth of
the likelihood function as s ~ HalfCauchy(10);
this choice means that the variance in reported
numbers may be up to a factor of 100 larger
than the actual reported number.

Priors for the full model (Table 3)

To constrain our full model, an SIRmodel with
weekly reporting modulation and change
points in the spreading rate, we chose the
same priors as for the simple model but added
the required priors associated with the change
points. In general, we assume that each set
of interventions (together with the increasing
awareness) leads to a reduction (and not an
increase) of l at a change point. Because we
cannot know yet the precise reduction factor,
we adhere to assuming a reduction by ~50%,
but always with a fairly wide uncertainty
so that, in principle, even an increase at the
change point would be possible. Wemodel the
time dependence of l as change points, not
as continuous changes, because the policy
changes were implemented in three discrete
steps, which were presumably followed by
the public in a timely fashion.
For the spreading rates, we chose log-normal

distributed priors as in the simple model. In
particular, we chose for the initial spreading
rate the same prior as in the simple model,
l0 ∼ LogNormal[log(0:4); 0:5]; after the first
change point l1 ∼ LogNormal[log(0:2); 0:5] ,
assuming the first intervention to reduce the
spreading rate by 50% from our initial esti-
mates (l0 ≈ 0.4) with a broad prior distri-
bution; after the second change point l2∼
LogNormal½logð1=8Þ; 0:5� , assuming the sec-
ond intervention to reduce the spreading rate to
the level of the recovery rate, which would lead
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to a stationary number of new infections and
corresponds approximately to a reduction of l
at the change point by 50%; and after the third
change point l3 ∼ LogNormal[log(1=16); 0:5],
assuming the third intervention to reduce the
spreading rate again by 50%. With that inter-
vention, we expect l3 to be smaller than the
recovery rate m, causing a decrease in new case
numbers and a saturation of the cumulative
number of infections.
For the timing of change points, we chose

normally distributed priors. In particular,
we chose t1 ~ Normal(2020/03/09,3) for the
first change point because on the weekend
of 8 March 2020, large public events such
as soccer matches or fairs were canceled.
For the second change point, we chose t2 ~
Normal(2020/03/16,1), becauseon 15March2020,
the closing of schools and other educational
institutions, along with the closing of nones-
sential stores, was announced and implemented
on the following day. Restaurants were allowed
to stay open until 6:00 p.m. For the third change
point, we chose t3 ~ Normal(2020/03/23,1),
because on 23 March 2020, a far-reaching con-
tact ban (Kontaktsperre), which includes the
prohibition of even small public gatherings as
well as complete closing of restaurants and
nonessential stores, was imposed by the gov-
ernment. Further policy changes may occur in
future; however, for now, we do not include
more change points.
The change points take effect over a cer-

tain time period Dti for which we chose
Dti ∼ LogNormal[log(3);0:3] with a median
of 3 days overwhich the spreading rate changes
continuously as interventions have to become
effective. The precise duration of the transition
has hardly any effect on the cumulative number
of cases (Fig. 2C). We assumed a duration of
3 days because some policies were not an-
nounced at the same day for all states within
Germany;moreover, the smooth transition also
can absorb continuous changes in behavior.
The number of tests that are performed and

reported vary regularly over the course of a
week and are especially low during weekends.
To account for this periodic variation, we mod-
ulated the number of inferred cases by the ab-
solute value of a sine function with, in total, a
period of 7 days. We chose this function be-
cause it is a nonsymmetric oscillation, fitting
the weekly variation of cases on a phenome-
nological level. For the amplitude of themod-
ulation, we chose a weakly informative Beta
prior: fw ~ Beta(mean = 0.7, std = 0.17) and for
the phase a nearly flat circular distribution:
Fw ~ VonMises(mean = 0, k = 0.01).

Model comparison

Because change-point detection entails evalu-
ating models with different numbers of pa-
rameters, some form of fair model comparison
is needed. This is necessary to compensate for

the higher flexibility of more complex models,
because this flexibility carries the risk of over-
fitting and overconfident forecasts. The stan-
dard approach to avoid overfitting in machine
learning is cross-validation, which has recently
also been advocated for Bayesian model com-
parison [e.g., (3, 36)], especially for models
used for predictions and forecasts. Thus, one
would ideally like to compare the models with
different numbers of change points by the
probability they assign to previously un-
observed data points. Technically this is mea-
sured by their out-of-sample prediction accuracy,
i.e., their log pointwise predictive density (lppd):

lppd ¼
XN
i¼1

log
�
∫pðyosi jqÞppostðqÞdq

�
ð6Þ

where the vector ½yos1 ;…; yosN � is a an out-of-sample
dataset of N new data points and ppost(q) =
ppost(q | y, Mj) is the posterior distribution of
the parameters given the in-sample data y and
the model Mj. In practice, the integral is ap-
proximated using a sufficient number of sam-
ples from ppost(q). However, this approach is
only reasonable if a sufficient amount of out-
of-sample data are available, which is not the
case in the early stages of a disease outbreak.
Therefore, the pointwise out-of-sample predic-
tion accuracy was approximated using LOO in
PyMC3 to compute Eq. 6 individually for each
left-out data point based on the model fit to
the other data points. The sum of these val-
ues, multiplied by a factor of –2, then yields the
LOO cross-validation (LOO-CV) score. Lower
LOO-CV scores imply better models.
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