1	Phylogeny and evolution of the SARS-CoV-2 spike gene from December 2022 to
2	February 2023
3	
4	
5	
6	Hsiao-Wei Kao ^{1*}
7	
8	¹ Department of Life Sciences, National Chung Hsing University, Taiwan, R.O.C.
9	145 Xingda Road., South District., Taichung City 40227
10	Fax: +886-4-22874740
11	Tel: +886-4-22840416
12	
13	*Correspondence: Hsiao-Wei Kao
14	E-mail: hkao@dragon.nchu.edu.tw
15	
16	Keywords: BA.5, BQ.1, diversifying center, median-join network, PAML, selection,
17	XBB, XBC
18	

19 Abstract

20	Background: By the end of 2022, new variants of SARS-CoV-2, such as BQ.1.1.10,
21	BA.4.6.3, XBB, and CH.1.1, emerged with higher fitness than BA.5.
22	Methods: The file (spikeprot0304), which contains spike protein sequences, isolates
23	collected before March, 4, 2023, was downloaded from Global Initiative on Sharing
24	All Influenza Data (GISAID). A total of 188 different spike protein sequences were
25	chosen, of which their isolates were collected from December 2022 to February 2023.
26	These sequences did not contain undetermined amino acid X, and each spike protein
27	sequence had at least 100 identical isolate sequences in GISAID. Phylogenetic trees
28	were reconstructed using IQ-TREE and MrBayes softwares. A median-join network
29	was reconstructed using PopART software. Selection analyses were conducted using
30	site model of PAML software.
31	Results: The phylogenetic tree of the spike DNA sequences revealed that the majority
32	of variants belonged to three major lineages: BA.2 (BA.1.1.529.2), BA.5
33	(BA.1.1.529.5), and XBB. The median network showed that these lineages had at
34	least six major diversifying centers. The spike DNA sequences of these diversifying
35	centers had the representative accession IDs (EPI_ISL_) of 16040256 (BN.1.2),
36	15970311 (BA.5), 16028739 (BA.5.11), 16028774 (BQ.1), 16027638 (BQ.1.1.23),
37	and 16044705 (XBB.1.5). Selection analyses revealed 26 amino-acid sites under

38	positive selection. These sites included L5, V83, W152, G181, N185, V213, H245,
39	Y248, D253, S255, S256, G257, R346, R408, K444, V445, G446, N450, L452, N460,
40	F486, Q613, Q675, T883, P1162, and V1264.
41	Conclusion: The spike proteins of SARS-CoV-2 from December 2022 to February
42	2023 were characterized by a swarm of variants that were evolved from three major
43	lineages: BA.2 (BA.1.1.529.2), BA.5 (BA.1.1.529.5), and XBB. These lineages had at
44	least six diversifying centers. Selection analysis identified 26 amino acid sites were
45	under positive selection. Continued surveillance and research are necessary to monitor
46	the evolution and potential impact of these variants on public health.
47	
48 49 50 51	Keywords: BA.5, BQ.1, diversifying center, median-join network, PAML, selection, XBB, XBC
52	*Correspondence: <u>hkao@dragon.nchu.edu.tw</u>
53	¹ Department of Life Sciences, National Chung Hsing University, Taiwan, R.O.C.
54	145 Xingda Road., South District., Taichung City 40227

56 Background

57	On May 5, 2023, the World Health Organization (WHO) declared that COVID-
58	19 is no longer a public health emergency of international concern (PHEIC) due to the
59	decreasing trend in COVID-19 deaths, decline in COVID-19-related hospitalizations
60	and intensive care unit admissions, and the high levels of population immunity to
61	SARS-CoV-2 [1].
62	The Omicron (B.1.1.529) variant was designated as the fifth variant of concern
63	declared by the WHO on November 26, 2021 [2]. A comparison between the B.1.529
64	variant and the Wuhan-Hu-1 genome sequences revealed 53 nucleotide substitutions.
65	Within these substitutions, 30 were nonsynonymous substitutions located in the spike
66	gene [3, 4]. Additionally, there were six amino acid deletions at positions 69, 70, 143,
67	144, 145, and 211. Furthermore, three amino acid insertions (EPE) were observed
68	between positions 214 and 215, relative to the amino acid positions in the Wuhan-Hu-
69	1 spike protein [3, 4].
70	The major lineages that contributed to the pandemic from 2019 to 2022 were
71	Omicron BA.1, BA.2, BA.3, BA.4, and BA.5 [5]. Recently, new variants have
72	emerged, including BQ.1.1.10, BA.4.6.3, XBB, and CH.1.1, which had higher fitness
73	than BA.5 [6-8]. This higher fitness includes evasion of neutralization drugs and
74	convalescent plasma, even those targeting BA.5 breakthrough infections. The immune

75	escape mechanism of these new variants is primarily attributed to specific mutations
76	at amino acid sites R346, R356, K444, V445, G446, N450, L452, N460, F486, F490,
77	R493, and S494 within the receptor binding domain of the spike protein. These
78	mutations have been observed in at least five different phylogenetic lineages, which
79	suggests that there has been convergent evolution of the receptor binding domain
80	driven by preexisting SARS-CoV-2 humoral immunity [6-8].
81	In this study, the evolution of the SARS-CoV-2 spike gene between December
82	2022 and February 2023 was investigated. To summarize the major lineages of SARS-
83	CoV-2 and their spike gene evolution during this period, a phylogenetic tree and
84	median-joining network were reconstructed. Furthermore, to identify amino acid sites
85	that were potentially under positive selection and associated with adaptive changes in
86	the spike gene, the nonsynonymous versus synonymous substitution ratio (dn/ds ratio
87	$= \omega$) was calculated. This was done using the site model in the codeml module of the
88	PAML software [9].
89	Methods
90	Data collection and analyses
91	The file "spikeprot0304" containing spike protein sequences was downloaded from
92	the Global Initiative on Sharing All Influenza Data (GISAID) [10]. To filter the
93	sequences, the following criteria were applied using the Bioedit software [11]: the

94	collection days ranged from December 2022 to February 2023, the sequence lengths
95	ranged from 1259 to 1319 amino acids, and sequences without undetermined amino
96	acid X were included. After filtering, a total of 369,809 spike protein sequences were
97	obtained from the "spikeprot0304" file. To determine the number of identical isolate
98	sequences for different spike protein sequences in the GISAID database, the 369809
99	spike protein sequences were further filtered using different spike protein sequences
100	as references. Ultimately, 188 different spike protein sequences, referred to as protein
101	haplotypes, were obtained. Each protein haplotype consisted of at least 100 identical
102	isolate sequences within the set of 369809 spike protein sequences. For each protein
103	haplotype, one representative accession ID (GIS_ISL_) was selected.
104	To obtain the DNA sequences corresponding to the 188 spike protein haplotypes,
105	I downloaded the complete genomes of these haplotypes from GISAID using their
106	accession IDs. The downloaded complete genomes comprised the SARS-CoV-2 DNA
107	sequences. I aligned the 188 complete genomes using MAFFT v.7.450 software [12],
108	using the Wuhan-Hu-1 sequence (GenBank accession number: MN908947.3) as the
109	reference sequence. The resulting alignment contained 189 DNA sequences, including
110	the additional Wuhan-Hu-1 sequence. The spike DNA sequences were cut to a new
111	alignment for phylogenetic and selection analyses.

112	To align the 189 spike DNA sequences, the DNA sequences were first translated
113	into protein sequences using the Bioedit software. The translated protein sequences
114	were then aligned using MAFFT v.7.450 software. Based on the alignment of the
115	protein sequences, the corresponding DNA sequences were aligned using the Dambe
116	software [13].
117	Reconstruction of phylogenetic tree and median join network
118	I used the jmodeltest software [14] to determine the best evolutionary model for
119	the alignment of the spike DNA sequences. To reconstruct phylogenetic tree, I
120	conducted maximum likelihood (ML) and Bayesian analyses using IQ-TREE
121	software [15] and MrBayes software [16], respectively. In ML analysis, the statistical
122	support for the tree topology was assessed using 1000 bootstrap replicates. In BA
123	analysis, the parameters of the likelihood model were set as nst = 6 and rate =
124	invgamma, as determined by jmodeltest. The analysis was run for 10 ⁷ generations,
125	with a sample frequency of 1000 and a burn-in of 2500. The consensus tree with
126	posterior probability was constructed based on 7500 trees.
127	I reconstructed a median-join network based on the 189 spike DNA sequences.
128	The lineages of the spike sequences were assigned according to the Pango-lineage
129	nomenclatures [17] in the GISAID. The median network of the 189 spike DNA
130	haplotypes was constructed with PopART software [18]. To enhance the visualization

131	of different lineages in the phylogenetic tree and median-join network, I used
132	Inkscape and PowerPoint to edit the phylogenetic tree and median-join network. In
133	Inkscape, I assigned different colors to the Pango lineages based on hexadecimal
134	codes, while in PowerPoint, I used the corresponding RGB values to color-code the
135	lineages. These editing steps were performed to facilitate the easy identification and
136	differentiation of the various spike protein lineages in the phylogenetic tree and
137	median-join network.
138	To calculate the genetic distances between the major lineages of SARS-Cov-2,
139	the 189 spike DNA haplotypes were divided into nine major groups: Wuhan-Hu-1,
140	BA.1.1.529.2 (BA.2), BA.1.1.529.4 (BA.4), B.1.1.529.5 (BA.5), XBB.1, XBC, XBF,
141	XBM, and XBZ. The net average distance (the net number of amino acid differences
142	per sequence) was computed for all sequence pairs between these major groups using
143	MEGA11 software [19]. The net average distance between two groups is given by
144	$d_{\rm A} = d_{\rm XY} - ((d_{\rm X} + d_{\rm Y})/2)$
145	Where, d_{XY} is the average distance between groups X and Y, and d_X and d_Y are the mean
146	within-group distances [19]. The analysis assumed a uniform rate among sites, and
147	pairwise deletion was used to handle gaps between sequences.
148	To determine whether specific amino acid sites in the spike proteins of SARS-
149	Cov-2 were under selection, the nonsynonymous versus synonymous substitution

150	ratio (dn/ds ratio = ω) was calculated using the site model in the codeml program of
151	the PAML software [20]. The ω ratio provides information about the balance between
152	nonsynonymous (amino acid-changing) and synonymous (amino acid-preserving)
153	substitutions at each site. A value of $\omega < 1$ suggests purifying (negative) selection, $\omega =$
154	1 suggests neutral evolution, and $\omega > 1$ suggests positive (diversifying) selection.
155	Likelihood ratio tests were performed to compare different evolutionary models:
156	M0 (one ratio) versus M3 (discrete), M1a (nearly neutral) versus M2 (selection), and
157	M7 (beta) versus M8 (beta & ω). The Bayes empirical Bayes method was used to
158	calculate posterior probabilities for site classes [21]. If the likelihood ratio test is
159	statistically significant, it suggests that the amino acid sites are under selection. It is
160	important to note that only the 188 spike DNA haplotypes were analyzed in this study.
161	The Wuhan-Hu-1 sequence was not included in the analyses due to the absence of
162	Wuhan-Hu-1 spike protein haplotypes in the GISAID database from December 1,
163	2012, to February 2013. Amino acid sites with gaps in the spike DNA sequence
164	alignment were deleted because the nonsynonymous versus synonymous substitution
165	value cannot be calculated in the PAML software. The site numbering used the spike
166	protein (protein ID=QHD416.1) of the Wuhan-Hu-1/2019 (GenBank accession
167	number MN908947.3) as the reference for consistency.

168 Results

169 Characteristics of the spike protein sequences

170	According to the filtering criteria mentioned, a total of 369809 spike protein
171	sequences were obtained from the spikeprot0304 file. Among these sequences,
172	221323 isolates were collected in December 2022, 119971 isolates in January 2023,
173	and 28515 isolates in February 2023. No isolate was filtered out in March 2023. The
174	number of isolate sequences versus amino acid lengths of spike protein sequences is
175	as follows: 1710 isolate sequences had 1266 amino acids, 57587 isolate sequences
176	had 1267 amino acids, 216386 isolate sequences had 1268 amino acids, 45463 isolate
177	sequences had 1269 amino acids, 47036 isolate sequences had 1270 amino acids, 547
178	isolate sequences had 1271 amino acids, 528 isolate sequences had 1272 amino acids,
179	and 253 isolate sequences had 1273 amino acids. Other spike protein sequences with
180	lengths of 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1274, 1275, 1276, 1277, 1281,
181	1283, or 1319 amino acids had fewer than 72 isolate sequences (Fig. 1). Out of the
182	189 spike protein haplotypes analyzed, there were 4 haplotypes with 1266 amino
183	acids, 36 haplotypes with 1267 amino acids, 106 haplotypes with 1268 amino acids,
184	16 haplotypes with 1269 amino acids, 25 haplotypes with 1270 amino acids, one
185	haplotype with 1272 amino acids, and one haplotype with 1273 amino acids. The
186	haplotype with 1273 amino acids is the Wuhan-Hu-1 sequence, but its spike protein
187	haplotype was not found in the GISAID database from December, 2022 to February,

188 2023.

189	Net average genetic distances of spike proteins between major lineages of SARS-

- 190 CoV-2
- 191 The net average genetic distances of spike protein between Wuhan-Hu-1 and
- 192 B.1.1.529.2 (BA.2), B.1.1.529.4 (BA.4), B.1.1.529.5 (BA.5), XBB, XBC, XBF, and
- 193 XBM were 34.54, 31, 37.07, 36.62, 35, 37, 33, and 31 amino acids per sequence,
- respectively. The net average genetic distances of spike protein between B.1.1.529.2
- 195 (BA.2) and B.1.1.529.4 (BA.4), B.1.1.529.5 (BA.5), XBB, XBC, XBF, XBM, and
- 196 XBZ were 9.41, 7.3, 11.87, 16.71, 1.71, 11.41, and 8.67 amino acids per sequence,
- respectively. The net average genetic distances of spike protein between B.1.1529.4
- 198 (BA.4) and B.1.1.529.5 (BA.5), XBB, XBC, XBF, XBM, and XBZ were 1.99, 13.18,
- 199 15, 12, 4, and 4 amino acids per sequence, respectively. The net amino acid
- differences per sequence of spike protein between B.1.1.529.5 (BA.5) and XBB, XBC
- 201 XBF, XBM, and XBZ were 11.73, 14.12, 10.52, 3.9, and 1.4 amino acids per
- sequence, respectively. The net average genetic distances of spike protein between
- 203 XBB and XBC, XBF, XBM, and XBZ were 19.62, 11.62, 15.18, and 12.93 amino
- acids per sequence, respectively. The net average genetic distances of spike protein
- between XBC, and XBF, XBM, and XBZ were 18, 17, 17 amino acids per sequence,
- 206 respectively. The net average genetic distances of spike protein between XBF and

207	XBM and XBZ was 14 and 12 amino acids per sequence, respectively. The net
208	average genetic distances of spike protein between XBM and XBZ was 6 amino acids
209	per sequence (Table.1).
210	Phylogenetic analyses of spike DNA sequences
211	The phylogenetic tree of 189 spike DNA sequences (Fig. 2) consisted of three
212	major clades. Clade I consisted of lineages or descendants of BQ.1, BF, and DN. It
213	was positioned closer to the root of the tree. Clade II consisted of lineages or
214	descendants of BA.5. It was located between clade I and clade III in the phylogenetic
215	tree. Clade III was further distal to the root compared to clade II and consisted of
216	subclades A, B, C, and D. Subclade A consisted of lineages or descendants of CM.
217	Subclade B encompasses lineages or descendants of CH.1, CA, CV, and BR.
218	Subclade C consisted of lineages or descendants of BN.1. Subclade D consisted of the
219	lineage or descendant of XBB lineages. In the maximum likelihood (ML) analysis, it
220	was found that the sequences BF.1.1 (EPI_ISL_16152392) and BF.7
221	(EPI_ISL_16080401) within clade I occupied the most basal position when the
222	phylogenetic tree was rooted by the Wuhan-Hu-1 sequence. Statistical analyses,
223	including bootstrap values and posterior probabilities, provided strong support for the
224	monophyly (common ancestry) of clade III and its subclades A, C, and D. A bootstrap
225	value or posterior probability of more than 0.95 indicated a high level of confidence

in the grouping of sequences within these clades.

227	Median-join network of spike DNA sequences	
-----	--	--

- 228 Median-join network (Fig. 3) showed that the BF.11 (EPI_ISL_16152392)
- connected to Wuhan-Hu-1 Spike DNA sequences with 29 nucleotide substitutions.
- 230 The network can be classified into six major clusters, i.e., BQ.1, BA.5, CH.1.1, CM,
- BN.1 and XBB.1. The BQ.1 cluster had two diversifying centers. In the BQ.1 cluster's
- first diversifying center, there were nine haplotypes with the following GISAID
- 233 accession IDs (EPI_ISL_): 16027638, 16028737, 16029423, 16052382, 16052485,

234 16064186, 16077475, 16113812, and 16660463. It is worth noting that these nine

- 235 DNA sequences were considered identical in the analysis because the PopART
- software only counted nucleotide substitutions and did not count insertions or
- 237 deletions in the alignment. In the BQ.1 cluster's second diversifying center, there were
- seven sequences with GISAID accession IDs (EPI_ISL_) of 16028751, 16028774,
- 239 16029345, 16029559, 16052449, 16131848, and 16217334. These sequences also
- 240 exhibited differences due to insertions and deletions. Among them, the spike protein
- sequence of EPI_ISL_16028774 was the most abundant, with 16194 isolates recorded
- in GISAID. The BA.5 cluster consisted of three haplotypes with GISAID accession
- 243 IDs (EPI_ISL_) of 15973011, 16029234, and 16059569. These three spike DNA
- sequences also exhibited variations due to insertions and deletions. Among them, the

245	spike protein sequence of EPI_ISL_15973011 was the most abundant, with 18098
246	isolates recorded in GISAID. The CH.1.1 cluster consisted of six spike DNA
247	haplotypes that had diversified from an unknown haplotype. Among them, the spike
248	protein haplotype (EPI_ISL_16044651) was the most abundant, with 7329 isolates
249	recorded. It differed from the haplotype of EPI_ISL_16028739 (BA.5.11) by 11
250	nucleotide substitutions. The CM cluster consisted of two haplotypes, namely
251	EPI_ISL_16093062 and EPI_ISL_16029195, with 349 and 857 isolates, respectively.
252	The spike DNA sequence of EPI_ISL_16029195 differed from that of
253	EPI_ISL_16028774 (BQ.1.1) by 13 nucleotide substitutions. The XBB cluster
254	consisted of 14 haplotypes, with its diversifying center consisting of two haplotypes
255	with GISAID accession IDs (EPI_ISL_) of 16044705 and 16206019. Among these
256	haplotypes, the spike protein haplotype of EPI_ISL_16044705 was the most
257	abundant, with 24144 isolates recorded. It differed from the haplotype of
258	EPI_ISL_16040256 (BN.1.2) by 13 nucleotide substitutions and from the haplotype
259	of EPI_ISL_16028739 (BA.5.11) by 22 substitutions. The DNA haplotype of
260	EPI_ISL_16168343 (XBC.1) differed from that of EPI_ISL_15973011 (BA.5.2) by
261	19 nucleotide substitutions.
262	Positive selection sites of spike protein

263	The values of likelihood ratio tests of M0 versus M3, M1a versus M2, and M7
264	versus M8 comparisons were larger the critical values at 0.01 level. The results
265	suggest that the M3, M2, and M8 models were statistically better than M0, M1a, and
266	M7 models, respectively. The Bayes empirical Bayes (BEB) analyses of M2 models
267	identified the 25 amino-acid sites under positive selection. These sites were located at
268	the positions of L5**, W152 **, G181 **, N185 **, G213*, V213*, H245*, Y248*,
269	D253**, S255*, S256**, G257*, R346**, R408*, K444**, V445**, G446**,
270	N450**, L452**, N460*, F486**, Q613**, Q675*, T883**, P1162**, and V1264**,
271	which were statistically significant at 0.05 (*) and 0.01 (**) levels. The M8 model
272	identified an additional one more site at V83* which was not identified by M2 model
273	(Table 2). The site of L5 was located in signal peptide domain (SP) of the spike
274	protein. The V83, W152, G181, N185, G213, H245, Y248, D253, S255, S256 and
275	G257 were located in N-terminal domain (NTD). The R346, R408, K444, V445,
276	G446, N450, L452, N460, and F486 were located in receptor binding domain (RBD).
277	The Q613 and Q675 were located in C-terminal domain 2 (CTD2). The T883 was
278	located in fusion-peptide proximal region (FPPR). The P1162 was located between
279	HR1 and HR2. The V1264 was located in cytoplasmic tail (CT). The nonsynonymous
280	substitutions of selection sites ranged from 4 to 11 in each protein haplotype and the
281	same nonsynonymous substitution in the same selection sites usually occurred in

282	different lineages except the substitutions of V83A, V213E, and V445P were
283	exclusively occurred in the XBB lineage. Among these selection sites, the site of 444
284	had the largest amino acid diversity. The nonsynonymous substitutions included
285	K444R, K444T, K444M, and K444N that were occurred in 7, 94, 4, 5 of 188 protein
286	haplotypes, respectively.
287	Discussion
288	The presence of long and short spike protein sequences, with variations in amino
289	acid length compared to the original Wuhan-Hu-1 spike protein, is not completely due
290	to incomplete sequencing or sequence error. This conclusion is based on several
291	observations made in the study. Firstly, the sequences did not contain ambiguous
292	amino acids (represented by X). Secondly, all the sequences analyzed contained a
293	start codon (M), Additionally, most sequences had a complete C-terminus domain. It
294	is important to note that these variations in amino acid length were typically observed
295	in the signal peptide or N-terminus domains, and rarely in the S2 region. Importantly,
296	these insertions and deletions were never observed in the receptor binding domain
297	(RBD) of the spike protein. The RBD is responsible for binding to the ACE-2
298	receptor, which is essential for viral entry into host cells. The fact that strains with
299	long or short spike proteins still maintained infectivity suggests that they were still
300	able to bind to the ACE-2 receptor despite these variations of sequence lengths.

301	The results showed that the net average genetic distances of spike protein between
302	the Wuhan-Hu-1 strain and lineages of B.1.1.529.2, B.1.1.529.4, B.1.1.529.5, XBB,
303	XBC, XBF, XBM, and XBZ ranged from 30.07 (between Wuhan-Hu-1 and
304	BA.1.1.529.5) to 37 (between Wuhan-Hu-1 and XBF) amino acids per sequence. The
305	results showed there was a great difference between the original (Wuhan-Hu-1) and
306	current strains. Furthermore, the study specifically mentions the genetic distances
307	between the XBB strain and several other strains. The genetic distances between XBB
308	and lineages of B.1.1.529.2, B.1.1.529.4, B.1.1.529.5, XBC, XBF, XBM, and XBZ
309	were 11.87, 13.18, 11.73, 19.62, 11.62, 15.18, and 12.93, respectively. Among these
310	strains, XBC had the largest difference from XBB, with 19.62 amino acids per
311	sequences. XBC was a recombinant of BA.2 Omicron (the most mutated) and
312	B.1.617.2 Delta (the most severity) strains [22, 23]. It is important to continue
313	surveillance and monitor the evolution of XBC.
314	The results of phylogenetic tree (Fig. 2) and median-join network (Fig. 3) revealed
315	that the presence of multiple lineages of SARS-CoV-2 during December 2022 to
316	February 2023. However, the majority of these lineages were descendants of three
317	major lineages: BA.2, BA.5, and XBB. To help summarize the relationships between
318	the lineages, the study employed the use of simplified names based on the Pango

- 319 lineage nomenclature. However, the full names providing a more detailed and precise
- 320 identification of the lineages.
- Firstly, the BA.2 (BA.1.1.529.2) consisted of the sub-lineages of CM
- 322 (B.1.1.529.2.3.20), CA (B.1.1.529.2.75.2), CV (B.1.1.529.2.75.3.1.1.3), DV
- 323 (B.1.1.529.2.75.3.4.1.1.1.1), CH (B.1.1.529.2.75.3.4.1.1), BR (B.1.1.529.2.75.4),
- 324 BN (B.1.1.529.2.75.5), EJ.2 (B.1.1.529.2.75.5.1.3.8.2) and BY (B.1.1.529.2.75.6).
- 325 Secondly, the BA.5 (BA. 1.1.529.5) consisted of eight major sub-lineages, i.e.,
- 326 BA.5.1, BA. 5.2, BA.5.3, BA.5.5, BA.5.6, BA.5.9, BA.5.10, and BA.5.11 in this
- study. The descendants of BA.5.1 (B.1.1.529.5.1) consisted of BA.5.1.5
- 328 (B.1.1.529.5.1.5), BA.5.1.12 (B.1.1.529.5.1.12), BA.5.1.27 (B.1.1.529.5.1.27), and
- 329 CL.1 (B.1.1.529.5.1.29.1) in this study. The descendants of BA.5.2 consisted of
- 330 BA.5.2.1 (B.1.1.529.5.2.1), BF.5 (B.1.1.529.5.2.1.5), BF.7 (B.1.1.529.5.2.1.7), BU.1
- 331 (B.1.1.529.5.2.16.1), CR.1.1 (B.1.1.529.5.2.18.1.1), CR.1.2 (B.1.1.529.5.2.18.1.2),
- 332 CN.1 (B.1.1.529.5.2.21.1), CN.2 (B.1.1.529.5.2.21.2), BA.5.2.23 (B.1.1.529.5.2.23),
- 333 CK.2 (B.1.1.529.5.2.24), in this study. The descendants of BA.5.3 (B.1.1.529.5.3)
- 334 consisted of BQ.1 (B.1.1.529.5.3.1.1.1.1), DU.1 (B.1.1.529.5.3.1.1.1.1.1.1.2.1), and
- CQ (B.1.1.529.5.3.1.4.1.1) in this study. The descendants of BA.5.6 (B.1.1.529.5.6.)
- consisted of BW.1.1 (B.1.1.529.5.6.2.1.1) in this study. The descendants of BA.5.10
- 337 ((B.1.1.529.5.10) consisted of DF (B.1.1.529.5.10.1) in this study. The BA.5.11

338	consisted of the BA.5.11 only. Thirdly, XBB was the recombinant of two BA.2
339	lineages, i.e., BJ.1 and BM1.1.1 [24]. The EG.1 and FL.10 were the abbreviations of
340	XBB.1.9.2.1 and XBB.1.9.1.10, respectively. The other recombinants include XBC (a
341	recombinant of BA.2 Omicron and Delta), XBF (a recombinant of BA.5 and
342	BA.2.75), and XBZ (a recombinant of BA.5.2 and EF.1.3) based on the Covid-lineage
343	Pango designation (Roemer, 2022) [23]. The most dominant variant was the strain
344	BQ. 1.1.23 with the representative accession number of EPI_ISL_16027638, and had
345	55919 identical isolate sequences, following by XBB.1.5 (representative accession
346	number EPI_ISL_16044705, 24133 identical isolate sequences), and BA.5.11
347	(representative accession number EPI_ISL_16028739, 21798 identical isolate
348	sequences) during December, 2022 to February, 2023.
349	The previous study demonstrated that certain mutations in the receptor-binding
350	domain (RBD) of the spike protein, specifically at positions R346, K356, K444,
351	V445, G446, N450, L452, N460, F486, F490, R493, or S494, could lead to the
352	evasion of neutralizing monoclonal antibodies (mAbs) or enhance binding to the
353	ACE2 receptor (Cao et al., 2022). In the present study, we found that mutations at
354	R346, K444, V445, G446, N450, L452, N460, and F486 had a nonsynonymous
355	versus synonymous substitution ratio greater than 1, indicating positive selection. This
356	suggests that these sites were undergoing evolutionary changes that may confer

357	selective advantages to the virus. However, mutations at K356, F490, F493, or S494
358	did not exhibit a nonsynonymous versus synonymous substitution ratio greater than 1
359	in the present analysis, suggesting that these sites were not under positive selection
360	during the specific time frame examined (December 2022 to February 2023) in the
361	study (Table 2). This finding contrasts with the previous study, which analyzed
362	sequences from January 2021 to October 2022. I propose that the discrepancy in
363	results between the previous and present studies may be attributed to antigenic shift.
364	It's possible that the evolutionary dynamics and selective pressures acting on SARS-
365	CoV-2 may have shifted, leading to different mutations being favored in different
366	time periods. Additionally, the present study identified positive selection for
367	mutations occurring outside of the RBD domain. These sites included L5, V83,
368	W152, G181, N185, G213, H245, Y248, D253, S255, S256, Q613, Q675, T883,
369	P1162, and V1264. However, the effects of these mutations on the fitness of SARS-
370	CoV-2 remain to be investigated.
371	In this study, it was observed that multiple strains coexisted between December
372	2022 and February 2023. However, the majority of these strains belonged to the
373	lineages or sub-lineages of BA.2 (BA.1.1.529.2), BA.5 (BA.1.1.529.5), and XBB
374	(Fig. 2). The diversifying centers of BN.1.2, BQ.1, BA.5.11, XBB were the isolate
375	sequences with representative accession IDs (EPI_ISL_) of 16040256, 16027638,

376	16028739, and16044705, respectively (Fig. 3). I propose that the complete sequences
377	or the receptor binding domain of these spike DNA sequences could be potential
378	candidates for vaccine design. This suggests that these sequences may possess
379	important characteristics that can be utilized in the development of effective vaccines
380	against SARS-CoV-2.
381	As of June 10, 2023, just before submitting our manuscript, the XBB.1.5 and
382	XBB.1.16 strains have emerged as the globally dominant strains, with respective
383	frequencies of 72% and 12% based on data from GISAID [25]. These strains have
384	gained prominence and become widespread within the population. Additionally, the
385	XBC variant is a recombinant of BA.2 (Omicron) and B.1.617.2 (Delta) [17, 23].
386	XBC exhibits significant differences from the XBB lineages and its sub-lineages,
387	making it a distinct variant from XBB. Considering the success of the Omicron
388	variant [3, 4], I propose that the XBC.1 strain or its sub-lineages could potentially
389	become dominant strains following the XBB.1 lineage and its sub-lineages. Continued
390	surveillance and research are necessary to monitor the evolution and potential impact
391	of these variants on public health.
392	

393 Acknowledgements

394	We gratefully acknowledge all data contributors, i.e., the Authors and their
395	Originating laboratories responsible for obtaining the specimens, and their
396	Submitting laboratories for generating the genetic sequence and metadata and
397	sharing via the GISAID Initiative, on which this research is based (Supplementary
398	Table 1).
399	
400	Funding
401	Not applicable
402	
403	Availability of data and materials
404	All sequences were downloaded from Global Initiative on Sharing
405	Avian Influenza Data (GISAID, https://www.gisaid.org/) and GenBank (https://
406	www.ncbi.nlm.nih.gov/nucleotide/).
407	
408	Ethics approval and consent to participate
409	Not applicable.
410	
411	Consent for publication
	22

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.23.549423; this version posted July 24, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

412 Not applicable.

413

414 Competing interests

415 The authors declare that they have no competing interests.

416

417 Author details

- ¹Department of Life Sciences, National Chung Hsing University, Taiwan, R.O.C.
- 419 145 Xingda Road., South District., Taichung City 40227, Fax: +886-4-22874740
- 420 Tel: Tel : +886-4-22840416
- 421
- 422 *Correspondence: Hsiao-Wei Kao
- 423 E-mail: hkao@dragon.nchu.edu.tw

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.23.549423; this version posted July 24, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

425 Figure legends

427	Figure 1	l. Number of isolate se	equences in C	GISAID of d	lifferent lengths	of spike
	0				0	

428 protein from December 2022 to February 2023.

430	Figure. 2. Phylogeny of SARS-CoV-2 spike DNA sequences. The terminal node
431	(leaf) is the GISAID ID of the sequence followed by the lineage name in
432	parentheses, the length of the spike protein, and the number of isolates. Statistical
433	supports are labeled on the branches. The values below 60% are not labeled.
434	
435	Figure. 3. Median-join network of SARS-CoV-2 spike DNA sequences from
436	December 2022 to February 2023. GISAID ID was labeled inside the circles. The
437	number of isolates and lineages were labeled outside the circles. The number of
438	nucleotide substitutions between haplotypes was labeled on the lines with hatch
439	bars. When the hatch bars exceed 5, the substitutions were also labeled with
440	numbers.

References

444	1.	World Health Organization. WHO Statement on the fifteenth meeting of the IHR
445		(2005) Emergency Committee on the COVID-19 pandemic. World Health
446		Organization, Geneva, Switzerland. 2023. https://www.who.int/news/item/05-05-
447		2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-
448		(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-
449		pandemic
450	2.	World Health Organization. Update on Omicron. World Health Organization,
451		Geneva, Switzerland. 2021. https://www.who.int/news/item/28-11-2021-update-
452		<u>on-omicron</u>
453	3.	Martin DP, Lytras S, Lucasi AG, Maier W, Grüning B, Shank SD et al. Selection
454		analysis identifies cluster of unusual mutational changes in omicron lineage BA.1
455		that likely impact spike function. Mol Biol Evol. 2022;39 (4): msac061.
456		https://doi.org/10.1093/molbev/msac061
457	4.	Dejnirattisai W, Huo J, Zhou D, Zahradník J, Supasa P, Liu C et al. SARS-CoV-2
458		Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody
459		responses. Cell 2022;185(3): 467-484. https://doi.org/10.1016/j.cell.2021.12.046
460	5.	Tegally H, Moir M, Everatt J, Giovanetti M, Scheepers C, Wilkinson E et al.
461		Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa.

462	Nat Med. 2022;28:1785–1790. <u>https://doi.org/10.1038/s41591-022-01911-2</u>
463	6. Willett BJ, Grove J, MacLean OA, Wilkie C, Lorenzo GD, Furnon W, et al.
464	SARS-CoV-2 Omicron is an immune escape variant with altered cell entry
465	pathway. Nat. Microbiol. 2022;7:1161-1179. https://doi.org/10.1038/s41564-022-
466	01143-7
467	7. Wang L, Møhlenberg M, Wang P, Zhou H. Immune evasion of neutralizing
468	antibodies by SARS-CoV-2 Omicron. Cytokine Growth Factor Rev. 2023;70:13–25.
469	8. Cao Y, Jian F, Wang J, Yu Y, Song W, Yisimayi A, et al. Imprinted SARS-CoV-2
470	humoral immunity induces convergent Omicron RBD evolution. Nature
471	2023;614:521-529. https://doi.org/10.1038/s41586-022-05644-7
472	9. Yang, Z., Nielsen, R., Goldman, N. and Perdersen, A.M. Condon-substitution
473	models for heterogeneous selection pressure at amino acid sites. Genetics
474	2000;155(1): 431-449. https://doi.org/10.1093/genetics/155.1.431
475	10. Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID's
476	innovative contribution to global health. Global Chall. 2017;1(1):33-46.
477	https://doi.org/10.1002/gch2.1018
478	11. Hall TA. BioEdit: A user-friendly biological sequence alignment editor and
479	analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser 1999,41:95-98.
480	12. Katoh K, Standley DM. (2013). MAFFT multiple sequence alignment software

- 481 version 7: Improvements in performance and usability. Mol. Biol. Evol.
- 482 2013;30(4):772-780. <u>https://doi.org/10.1093/molbev/mst010</u>
- 483 13. Xia X. DAMBE7: New and improved tools for data analysis in molecular biology
- 484 and evolution. Mol. Biol. Evol. 2018;35(6):1550–1552.
- 485 <u>https://doi.org/10.1093/molbev/msy073</u>
- 486 14. Posada D. Jmodeltest: Phylogenetic model averaging. Mol Biol Evol.
- 487 2008;25(7):1253-1256. <u>https://doi.org/10.1093/molbev/msn083</u>
- 488 15. Nguyen LT, Schmidt HA, Haeseler A, Minh BQ. IQ-TREE: A fast and effective
- 489 stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol.
- 490 Evol. 2015;32(1):268-274. <u>https://doi.org/10.1093/molbev/msu300</u>
- 491 16. Huelsenbeck, JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic
- 492 tree. Bioinformatics 2001;17(8):754-755.
- 493 <u>https://doi.org/10.1093/bioinformatics/17.8.754</u>
- 494 17. Rambaut A, Holmes EC, O'Toole Á, Hill V, McCrone JT, Ruis C et al. A
- dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic
- 496 epidemiology. Nat Microbiol. 2020;5,1403–1407. <u>https://doi.org/10.1038/s41564-</u>
- 497 <u>020-0770-5</u>
- 18. Leigh JW, Bryant D. POPART: full-feature software for haplotype network
- 499 construction. Methods Ecol Evol. 2015;6 (9):1110–1116.

500 <u>https://doi.org/10.1111/2041-210X.12410</u>

- 501 19. Tamura K, Stecher G, Kumar S. MEGA 11: Molecular evolutionary genetics
- analysis Version 11. Mol Biol Evol. 2021;38(7):3022-3027.
- 503 <u>https://doi.org/10.1093/molbev/msab120</u>
- 504 20. Yang Z. PAML 4: Phylogenetic analysis by maximum likelihood.
- 505 Mol. Biol. Evol. 2007;24(8):1586–1591.
- 506 https://doi.org/10.1093/molbev/msm088
- 507 21. Yang, Z., Wong, W. S., and Nielsen, R. (2005). Bayes empirical Bayes inference
- of amino acid sites under positive selection. Mol. Biol. Evol. 2005;22(4):1107–
- 509 1118. <u>https://doi.org/10.1093/molbev/msi097</u>
- 510 22. Varea-Jiménez E, Cano EA, Vega-Piris L, Sánchez EVM, Mazagatos C,
- 511 Rodríguez-Alarcón LGSM et al. Comparative severity of COVID-19 cases
- 512 caused by Alpha, Delta or Omicron SARS-CoV-2 variants and its association
- 513 with vaccination, Enferm Infecc Microbiol Clin.2022;
- 514 <u>https://doi.org/10.1016/j.eimc.2022.11.003</u>
- 515 23. Roemer C. Cov-Lineages/Pango-designations-Lineage description. Github: cov-
- 516 lineages/pango-designation. 2022. <u>https://github.com/cov-lineages/pango-</u>
- 517 <u>designation</u>
- 518 24. Tamura T, Ito J, Uriu K, Zahradnik J, Kida I, Anraku Y et al. Virological

519	characteristics of the	SARS-CoV-2 XBB	variant derived from	recombination of
-----	------------------------	----------------	----------------------	------------------

- 520 two Omicron subvariants. Nat Commun. 2023;14:2800.
- 521 https://doi.org/10.1038/s41467-023-38435-3
- 522 25. Hadfield J, Megill C, Bell, SM, Huddleston J, Potter B, Callender C. et al. (2018)
- 523 Nextstrain: real-time tracking of pathogen evolution. *Bioinformatics*
- 524 2018;34(23):4121-4123. <u>https://doi.org/10.1093/bioinformatics/bty407</u>

Table 1. The net average genetic distances of per sequence between nine-lineage

527 spike proteins. All ambiguous positions were removed for each sequence pair

528 (pairwise	deletion	option).
---------------	----------	----------

	XX 7 1	D 1 1 500 0	D 1 1 500 1	D 1 1 500 5	VDD	WDC	VDE	VDL
	Wuhan-	B.1.1.529.2	B.1.1.529.4	B.1.1.529.5	XBB	XBC	XBF	XBM
	Hu-1	(BA.2)	(BA.4)	(BA.5)				
B.1.1.529.2	34.54							
(BA.2)								
B.1.1.529.4	31.00	9.41						
(BA.4)								
B.1.1.529.5	37.07	7.30	1.99					
(BA.5)								
XBB	36.62	11.87	13.18	11.73				
XBC	35.00	16.71	15.00	14.12	19.62			
XBF	37.00	1.71	12.00	10.52	11.62	18.00		
XBM	33.00	11.41	4.00	3.90	15.18	17.00	14.00	
XBZ	31.00	8.67	4.00	1.40	12.93	17.00	12.00	6.00

530	Table 2. Likelihood ration test of M0 vs M3, M1a vs M2, M7 vs M8, and amino acid
531	site of spike protein under positive selection.

Parameter	M0	M3	M1a	M2	M7	M8
-lnL	7508.42	7281.49	7414.25	7295.08	7421.13	7322.99
2ln (L1-L0)	2ln (L1-L0) 453.86 (between		238.34 (between M1a and M2)		196.28 (between M7 and M8)	
	M0 and M	[3)				
df between	2	4		2		2
models						
Chi square	P<(P<0.01		P<0.01	P<0.01	
test						
Positive	Not	Not	Not	L5**, W152**,	Not	L5**, V83*, W152
selective	allow	allow	allow	G181**, N185*,	allow	**, G181 **, N185 *,
sites				V213*, H245*,		V213*, H245*,
				Y248*, D253**,		Y248*, D253**,
				S255*, S256**,		S255*, S256**,
				G257**, R346**,		G257*, R346**,
				R408**, K444**,		R408*, K444**,
				V445**, G446**,		V445**, G446**,
				N450**, L452**,		N450**, L452**,
				N460*, F486**,		N460*, F486**,
				Q613**, Q675*,		Q613**, Q675*,
				T883**, P1162**,		T883**, P1162**,
				V1264**		V1264**

* Statistically significant at 0.05, ** statistically significant at 0.01.

- **Fig 1**. Number of isolate sequences versus different lengths of spike protein in
- 537 GISAID from December 2022 to February 2023.
- 538

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.23.549423; this version posted July 24, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

539

541 Fig. 2. Phylogeny of SARS-CoV-2 spike DNA sequences. The terminal node (leaf) is

- the GISAID ID of the sequence followed by the lineage name in parentheses, the
- 543 length of the spike protein, and the number of isolates. Statistical supports are labeled
- on the branches. The values below 60% are not labeled.

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.23.549423; this version posted July 24, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- 547 Fig. 3. Median-join network of SARS-CoV-2 spike DNA sequences from December
- 548 2022 to February 2023. GISAID ID was labeled inside the circles. The number of
- 549 isolates and lineages were labeled outside the circles. The number of nucleotide
- substitutions between haplotypes was labeled on the lines with hatch bars. When the
- hatch bars exceed 5, the substitutions were also labeled with numbers.