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Abstract

Betacoronavirus, including SARS-CoV-2, can infect lymphocytes through the
CD147 expression. This circumstance, in addition to inducing the death of
lymphocytes, thus drastically reducing their population and causing a serious
immune deficiency, allows it to remain hidden for long periods of latency, us-
ing them as a viral reservoir in what is named Long-Covid Disease. Mutations
that confer an improvement in this sense, although the infection appears to
be less severe, must be considered as genotypes of surveillance. The present
article exhibits a computational assay for the latest complete sequences re-
ported to GISAID, correlating those genotypes with an enhancement in the
affinity of the complex that causes this immune deficiency. A novel high-
interaction coupling of N-RBD and CD147 is presented as the main way of
infecting lymphocytes, allowing to define those genotypes involved in their
affinity enhancement.
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Abstract

Background

Epigenetics and clinical observations referring to Betacoronavirus lead to the
conjecture that Sarvecovirus may have the ability to infect lymphocytes using
a different way than the spike protein. In addition to inducing the death of
lymphocytes, thus drastically reducing their population and causing a serious
immune deficiency, allows it to remain hidden for long periods of latency using
them as a viral reservoir in what is named Long-Covid Disease. Exploring
possibilities, the hypothesis is focused on that N protein may be the key of
infecting lymphocytes.

Method

The present article exhibits a computational assay for the latest complete
sequences reported to GISAID, correlating N genotypes with an enhance-
ment in the affinity of the complex that causes immune deficiency in order
to determine a good docking with the N protein and some receptors in lym-
phocytes.

Results

A novel high-interaction coupling of N-RBD and CD147 is presented as the
main way of infecting lymphocytes, allowing to define those genotypes in-
volved in their affinity enhancement.
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Conclusion

The hypothesis is consistent with the mutagenic deriving observed on the in-
silico assay, which reveals that genotypes N/120 and N/152 are determinant
to reduce the Immune Response of the host infecting lymphocytes, allow-
ing the virus persists indefinitely and causing an Acquire Immune Deficiency
Syndrome.

Keywords: Long-Covid Disease, SARS-CoV-2, Acquired Immune
Deficiency Syndrome, AIDS, Artificial Intelligence, Bioinformatics

1. Introduction

In SARS outbreak of 2003 lymphopenia (in particular T lymphopenia) was
the most common clinical evidence (98% of patients) during the course of ill-
ness. A notable drop in CD4 and CD8 lymphocyte counts occurred early in
the course of the syndrome and it was associated with adverse outcomes[1].
In contrast, in SARS-CoV-2 lymphopenia is not the most common clini-
cal entity (40% of patients)[2], which suggests that some important tropism
related to the metabolic pathways where lymphocytes are involved is an evo-
lutionary key in SARS coronavirus.

Lymphopenia as a major immunological abnormality that occurs in the ma-
jority (72%)[3] of severe COVID-19 patients, can cause general immuno-
suppression facilitating viral persistence[4]. Lymphopenia can be inherited
or acquired. Acquired lymphopenia can be due to different biological con-
ditions and disorders, however it is mainly related to HIV and other viral
infections. Thus, various molecular and cellular mechanisms participate in
the occurrence of acquired lymphopenia.

Clinical data reveals bone marrow impairment[3] by suppressing the develop-
ment of hematopoietic precursor cells through elevated expression of CXCL10
(IP-10) and CCL2 (MCP-1). Dysregulation of the host immune response, as
a hallmark of severe SARS-CoV-2 infections[5], results in an uncontrolled re-
lease of serum cytokines, especially interleukin-6 (IL-6), which correlates with
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disease severity[6] suppressing lymphopoiesis via direct effects on hematopoi-
etic stem/progenitor cells[7, 8, 9].

Other studies point to clinical observations related to metabolic pathways of
apoptosis. A high expression of P53 was measured in COVID-19 patients[3]
suggesting that lymphopenia may be secondary to apoptosis triggered by
P53[10] over-expression. In addition, Antibody-Dependent Enhancement can
as well induce apoptosis[11].

But the major evidence we found for the primary etiology is that lympho-
cytes are infected by SARS-CoV-2[12] and when it happens viroporin 3a
(ORF3a)[13] interacts with NLRP3 causing pyroptosis[14]. Pyroptotic im-
mune cell-secreted pro-inflammatory cytokines might worse lymphopenia via
the direct killing of lymphocytes, contributing to the dysfunction of adap-
tive immunity in COVID-19, and it is very well correlated with COVID-19
immunopathogenesis[15].

Even when SARS-related coronaviruses (SARS-CoVs) can hardly replicate
in lymphocytes[16] due to rapid apoptosis or pyroptosis, and even when only
a few times pyroptosis happens, virions from inside the lymphocyte can re-
lease intact outside, ready to infect another T-cells.

This casuistic is a very clear picture of the strategy for viral persistence.
The natural evolution of SARS-CoVs, in addition to spread-out more effec-
tively by air, is to reduce the response capacity of the immune system to
persist longer in the host, causing Acquired Immune Deficiency Syndrome.

However, the way that SARS-CoV-2 can infect T-cells is not very clear nowa-
days. ACE2 is not very much expressed in lymphocytes[17] so other ligands
must be considered, such as CD147, cyclophilins, CD26 and LFA-1[18] very
well expressed in lymphocytes. Interaction between CD147 and the N pro-
tein of SARS-CoV-2 (Cov2N) through CypA has been described in 2021 by
Cervera-Grau and Bermejo-Valdés[19]. However, not only does protein N
interact with CD147, but the SARS-CoV-2 S-RBD[20] can also bind to it.

CD147 is a transmembrane glycoprotein of the immunoglobulin superfamily
also known as basigin or extracellular matrix metalloprotease inducer (EMM-
PRIN). It is the main tissue inducer of matrix metalloproteases (MMPs),
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and also induces vascular endothelial growth factor production. It plays a
role in intercellular recognition and cancer cell survival (mostly by control-
ling lactate transport), its expression is increased in hypoxic states and in
many cancers, and it is considered to be a biomarker for cancer diagnosis
and prognosis[21]. In addition, it has been observed that CD147 expression
levels correlate with SARS-CoV-2 infection extent, vascular damage, and an
increased expression of vascular endothelial growth factor and thrombosis.

Serum CD147 is involved in Plasmodium falciparum infection, and an anti-
body produced in that disease (HP6H8) blocks the entry to the host cells, as
in this clinical trial was purposed[22]. Despite the undesirable, and very un-
known, effects of blocking CD147 functionality, which is not only restricted
to transmembrane signaling, if this monoclonal can avoid the binding of
CoV2N an aligned docking with that must contain that N-genotypes that
cause a higher rate of AIDS following SARS-CoV-2 infection.

Following that observations, we focus on the hypothesis that Betacoron-
avirus, especially from the phylogenesis of Sarvecovirus, has the potential
to cause an Acquired Immune Deficiency Syndrome as the main objective of
persistence, potentiated by respiratory disease as a vehicle of rapid propaga-
tion and dissemination for its maturation affinity to infect lymphocytes.

Thus, in order to elevate this hypothesis to theory we perform an artificial
intelligence-driven assay wrangling the latest full-length sequences reported
to GISAID, correlating those genotypes with the protein complexes implied
in the clinical scope of immunodeficiency, specifically with those receptors
that are very expressed in lymphocytes.

2. Materials and Methods

Primary Data Set has been retrieved from GISAID[23], NEXTSTRAIN[24],
The Protein Data Bank[25] and worldwide data on COVID-19 sources[26].
Scopes have been defined by an Associative Information Model with this
Primary Data Set and the clinical information crawled by the keywords sup-
ported during the proceeding.

The prototype (TRL9) of CliniXy platform for Clinical Research Artificial
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Intelligence Driven, produce bioinformatics analysis proceeding with the aim
of determining which genotypes exhibit an evolutionary potential to gain for
the objective targeted, by wrangling scopes dynamically integrating the fol-
lowing modules and subsystems:

• APBS Electrostatics Plug-in[27], to calculate electrostatic potential
molecular surface.

The Poisson-Boltzmann equation allows determining the electrical po-
tential distribution of the molecular surface of a protein. These values
are essential to determine how electrostatic interactions will affect the
molecules in their coupling.

• ColabFold[28] based on AlphaFold2[29] framework under Colab envi-
ronment for modeling molecular structures from amino-acid sequences.

AlphaFold2 is the most accurate and fastest method to predict molecular
structures. It is based on a Deep Learning mechanism of an Artificial
Intelligence model based on experimental data structures weighted by
vectors of amino acid sequences that raise the precision above 90%.

• Implementation of MM-ISMSA[30] method which is used for fast and
accurate docking/binding.

This method is based on the calculation of Implicit Solvent Model,
including hydrogen bonding term and individual desolvation penalties
for each protein-ligand complex atom neighbors, and the Surface Area
contribution of the protein-protein complex formation due to the loss
of water bindings, in addition of Molecular Mechanics based on 12-6
Lennard-Jones potential for docking accuracy.

Pymol 2.4[31] has been used for analysis interpretation and graphical repre-
sentations for report results.
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3. Results

Correlated receptors for the objective targeted were found in the following
PDB entries:

6LZG: Structure of novel coronavirus spike receptor-binding domain com-
plexed with its receptor ACE2
5X07: Crystal structure of CD147 C2 domain in complex with Fab of its
monoclonal antibody 6H8
4U0Q: Plasmodium falciparum reticulocyte-binding protein homologue 5 (PfRH5)
bound to basigin
7R98: Structure of the SARS-CoV-2 N protein RNA-binding domain bound
to single-domain antibody B6
2OFZ: Ultrahigh Resolution Crystal Structure of RNA Binding Domain of
SARS Nucleopcapsid (N Protein) at 1.1 Angstrom Resolution in Monoclinic
Form
4J3K: Structure of the N-terminal domian of human coronavirus OC43 nu-
cleocapsid protein
7LGT: HLA-B*07:02 in complex with 229E-derived coronavirus nucleocapsid
peptide N75-83
7N45: Solution NMR structure of the N-terminal globular domain of the
endemic HKU1 coronavirus nucleocapsid protein
6LZ6: Crystal structure of MERS-CoV N-NTD complexed with ligand P4-3
5N4K: N-terminal domain of a human Coronavirus NL63 nucleocapsid pro-
tein
7T9L: Cryo-EM structure of SARS-CoV-2 Omicron spike protein in complex
with human ACE2 (focused refinement of RBD and ACE2)

From these items, several domains were identified, isolated, and cleaned for
wrangle dockings. Docking between CD147 and monoclonal antibody 6H8
was calculated and ranked with the best fit (figure 〈1〉) and desolvation energy
for the complex (∆G) was estimated in -141.28499 kcal/mol by MM-ISMSA
method.

Docking between SARS-CoV-2 spike protein (CoV2S) was found (figure 〈2〉)
very close to the same ligand domain with a ∆G estimated of -62.58 kcal/-
mol. That result fits very well with the MMGBSA calculation exposed in
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Molecular basis of the potential interaction of SARS-CoV-2 spike protein to
CD147 in COVID-19 associated-lymphopenia table 1[20].

Different good bindings for the protein N of SARS-CoV-2 (CoV2N) were
found, precisely one in the same domain area of ligand CD147 with the 6H8
monoclonal at a ∆G estimated on -142.23 kcal/mol as can be seen in the top
of figure 〈3〉. Crawling sequences uploaded to GISAID, mutations of CoV2N
for this docking were found at 135, 136, 141, 142, 151, and 152 positions.
Main mutation from protein N of SARS-CoV (CoV1N) is focused in 152
position (correlated with the sequence of CoV2N) as can be seen in the bot-
tom picture of figure 〈3〉. In addition binding of CoV1N-CD147D1 was 8%
higher (-154.39 kcal/mol) due to this mutation than the wild-type CoV2N
from Wuhan. Similarly, CoV1N has worse binding than HKU1 protein N
(HKU1N) with CD147-D1 due to mutations on 152 and 158 which shows
a very good affinity rising -160 Gibbs and relative to CoV2N codon 120 is
determinant (figure 〈4〉).

Mutations for a better fitting in the same domain from NL63 and OC43
protein N with the same ligand domain of CD147 were evidenced (figure
〈5〉), as well as a very good binding (-143 kcal/mol) in the same area with
the MERS-Cov of 2012(figure 〈6〉). No evidence of docking with CD147 in
the same place was found for 299E coronavirus but a weak alignment with
OC-43.

No other significant protein interactions with the SARS-Cov-2 N protein
were found in the scope of immunodeficiency.

A new structure (Cov2Nx) has been predicted in figure 〈7〉 as evolution in
the short time of the SARS-CoV-2 N protein having into account mutations
crawled from GISAID records. This new structure gains more than 8% affin-
ity to raise -154.48 kcal/mol, similar to N protein of SARS-CoV (CoV1N).

Antibodies with high affinity for this receptor domain were not found in
the Protein Data Bank, except monoclonal B6. Antibody B6 is reducing its
affinity directly for mutations 120 and 136 as well as by allosteric regulation
of others (figure 〈8〉 top). Positions 68, 136, 137 and 139 from predicted new
N protein collide with the antibody NAb-B6 (figure 〈8〉 down).
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4. Discussion

The hypothesis presented in the introduction states that Betacoronavirus,
especially from the phylogenesis of Sarvecovirus, has the potential to cause
an Acquired Immune Deficiency Syndrome as the main objective of persis-
tence, potentiated by respiratory disease as a vehicle of rapid propagation
and dissemination for its maturation affinity to infect lymphocytes.

As it has been exposed as well in the introduction the objective of this
manuscript is to elevate this hypothesis to theory by performing an artificial
intelligence-driven assay wrangling the latest full-length sequences reported
to GISAID, correlating those genotypes with the protein complexes implied
in the clinical scope of immunodeficiency.

Without prejudice to the fact that it would be desirable to extend this
research with observational trials and other empirical assays, In-Silico as-
says, as a purely logical method, are sufficient to consolidate a hypothesis
based on observations as theories, as it is widely accepted in science and
biotechnology[32] after Karl Popper stated in various books and very well
compiled in "The Two Fundamental Problems of the Theory of Knowledge"[33].
GISAID sequences are experiments that complement clinical observations re-
ferred and while no observation (nor another logical assertion) contradicts
the results of the logical method, the hypothesis may be considered a cor-
rect theory. As Karl Popper said, experiments do not confirm hypotheses,
but theories must be falsifiable, and this theory can be falsifiable easily as
long as lymphocytes will not be infected (or have a very low incidence) by
SARS-CoV-2 when a subject has a high titer of spike’s protein neutralizing
antibodies. As we have observed during more than 2 years of vaccination
with SARS-Cov-2 S protein, people with high titer of antibodies against S
protein are being hospitalized with lymphopenia.

Due to the results of the in-silico assay, it is obvious that positions 27, 28,
and 100 of the CD147-D1 protein compete for binding with both protein
N and protein S. However, competition for the best binding in these corre-
sponding positions of protein S (specifically the positions 481, 484 and 493)
are determinant in binding to ACE2.
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Improvement in the affinity of S protein with CD147 is compromising the
affinity of protein S with ACE2, which finds its best genotype in the S/493Q
genotype, as was already reported in January 2022[34], and as well with
S/484K which was advised in march 2021[35].

A triple mutation that improves the affinity in both ligands (ACE2 and
CD147) is extremely remote, so as it is advantageous for propagation to in-
fect respiratory tissue, the natural evolution of SARS-CoVs is to improve the
affinity of S with ACE2 to the detriment of lymphocyte invasion.

However, infecting lymphocytes gives coronaviruses the ability to prolong
the period of contagiousness by delaying the immune response, obviously,
without causing a sudden fatality, as was the case in 2003 with SARS-CoV.

Mutations on S and N genes from SARS-CoV (Cov1) to SARS-Cov-2 (Cov2)
according to the results are a natural evolution of Cov1 to improve the affin-
ity with ACE2 at the cost of reducing the invasive capacity of lymphocytes,
and this is how it behaved.

The N protein of the 2003 SARS-CoV coronavirus (CoV1N) respecting the
Wild Type of SARS-CoV-2, has 8 mutations in the NTD zone. Taking the
SARS-CoV-2 alignment as a reference, these mutations occur at codons 63,
94, 103, 120, 128, 131, 152 and 157. Mutations A120G, P152A, and A157I
of the N protein directly affect binding to CD147-D1, reducing its affinity by
8% [142:154] compared to SARS-CoV 2003. However, Cov2-S binds ACE2
30% [85:65] better than Cov1-S to ACE2.

Reduction in affinity with CD147, as has been observed, leads to a reduction
of lethality. However, it is still enough to compromise the immune system,
postpone the humoral response and promote viral persistence.

On the other hand, these 8 mutations are enough so that the same anti-
bodies that are capable of neutralizing the entry of SARS-CoV-1 into CD8+
lymphocytes are incompetent with SARS-CoV-2.

SARS-CoV-1 antibody-dependent enhancement (ADE) of infection was re-
lated in 2005[36] hypothesizing that it was due to a previous infection with
other Betacoronavirus. ADE has also been well documented in cats infected
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with the Feline Infectious Peritonitis Coronavirus, in which disease severity
is increased following previous immunization against this virus.

Just as the S protein only has a receptor in the Sarvecovirus sub-lineages
that include SARS, the N protein is present in other sub-lineages of the Be-
tacoronavirus genera.

Coronaviruses OC43, NL63, HKU1, and 229E are responsible for the com-
mon cold [37] and since the 1970s they have been suspected of contributing
negatively to the co-infection with other viruses, reducing the response of the
immune system.

Although the sequences of the N protein in other coronaviruses may ap-
pear very different, their morphology, especially regarding the amino acids
closest to the CD147-D1 ligand, shows fairly well-conserved homology.

Specifically, positions 50 and 123 of OC43 have mutated to improve affinity
with CD147-D1. Despite the N protein of Coronavirus 229E (229E-N) does
not show a good morphological coupling with CD147-D1, a clear alignment
with OC43-N is observed, suggesting a recombination or evolution from that.

Protein N of HKU1 (HKU1N) shows a very clear homology with CoV2N.
HKU1N results in a better binding than CoV1N mainly due to codon num-
ber 120 (over the numeration of the CoV2N sequence). As we have seen
before, the mutation in this codon directly affects the binding. So we can
say that the N/120N genotype is decisive in improving affinity. Likewise, the
region between positions 148 and 154 allows a considerable improvement.
In fact, any mutation at positions close to 148 and 154 must be considered
decisively evolutionary.

Even when HKU1 does not present good affinity with ACE2, since HCoV-
OC43 and HCoV-HKU1 employ glycan-based receptors carrying 9-O-acetylated
sialic acid [38] and it is very well conserved between them[39] it presented
in 2016 (from February to March) a very high rate of hospitalizations (54%)
and a very high rate of ICU admission (30%)[40], so in fact, HKU1 severity
must be due to HKU1N-CD147 binding.

Furthermore, although more unlikely, recombination is possible as Patrick
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Y.C. Wooo warned already in 2006[41].

Therefore, people who have been exposed to previous Coronavirus SARS-
CoV-1, HKU1, OC43, NL63 or MERS, will see their cellular response affected
against the N protein of Cov2 as well as in the production of new neutralizing
antibodies, making lymphocytes more vulnerable and thus aggravating the
course of the disease.

Based on the available data on COVID-19 patients and data from the pre-
vious SARS-CoV-1 and MERS outbreaks, there is substantial evidence that
cross-reactive B and T cell responses may establish an unfavorable environ-
ment for the primary immune response to SARS-CoV-2 virus[42].

Due to cross-reaction to related coronavirus strains from earlier infections,
and after results here exposed, the patient’s viral history of coronavirus in-
fection might be crucial to the severity of the course of the current infection
with SARS-CoV-2; a phenomenon that has been called “original antigenic
sin.”[43].

Results are showing that the most recent mutations for the binding zone
with CD147-D1, are deriving in an enhanced affinity and immune evasion
of previous Cov2N antibodies, as well as compromise the reliability of rapid
antigen tests that are directed to this protein[44].

The sequence (Cov2Nx) contains the 4 highest-risk mutations that have
emerged in recent months:

GIIWVAIDGALNISKDHIGTRNSSNNAAIVLQLPQGTTLPKGFYAE
E P PA

The structure of this sequence predicted by AlphaFold2 shows a very high
morphological alteration. According to molecular dynamics simulation, Cov2Nx
improves affinity to CD147-D1 by 8% [142:154] relative to CoV2N, matching
the lethal capacity of CoV1N. With this new structure, the antibodies that
recognize the antigens of the CoV2N protein suffer collisions at positions 68,
136, 137, and 139.

Desolvation energy at the antigenic recognition region by previous antibodies
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is reduced below 30% (61% according to the simulation) which suggests that
both cellular memory and previous antibodies may be incompetent for these
new variants.

From the process of more than 8 million experimental data registered in
GISAID, an immunological escape mechanism and a greater probability of
developing Acquired Immune Deficiency Syndrome by SARS-CoV-2 are ob-
served, according to the mutations in the N gene deriving towards a Variant
of Concern with a higher rate of systemic commitment.

5. Conclusions

According to the results of the In-Silico, it is evidenced a natural evolution
of the Betacoronavirus genera in order to balance propagation, infectivity
and persistence. The main genotypes are evidenced in S/493, S/484, N/120
and N/152. Optimizing S/493 and S/484 means better airborne spread by
infecting more the lungs and nasopharyngeal tissue meanwhile N/120 and
N/152 genotypes reduce the Immune Response infecting lymphocytes allow-
ing the virus to persist indefinitely, causing an Acquire Immune Deficiency
Syndrome and other related syndromes to chronic viremia, especially with
viruses that cause respiratory and blood diseases.
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7. Figures

Figure 1: Meplazumab 6H8 monoclonal docking with CD147 Domain 1
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Figure 2: SARS-CoV-2 Spike protein docking with CD147 D1
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Figure 3: SARS-CoV-2 N and SARS-CoV N protein docking with CD147 D1
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Figure 4: HKU1 N protein docking with CD147 D1
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Figure 5: Mutations for enhance fitting N-CD147 in NL63 and OC43

Figure 6: Docking of MERS-Cov N protein with CD147
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Figure 7: Docking of new predicted SARS-CoV-2 N protein with CD147

18

Jo
urn

al 
Pre-

pro
of



Figure 8: Nano-body B6 affinity with wild type SARS-CoV-2 N protein versus predicted
new protein N
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