< 返回主頁

covLLM: Large Language Models for COVID-19 Biomedical Literature

by | 5月 8, 2024 | 西醫臨床科硏實證, 科學抗疫

對不起,此内容只適用於English

By Yousuf A. Khan et al.

Source github

Abstract

The COVID-19 pandemic led to 1.1 million deaths in the United States, despite the explosion of coronavirus research. These new findings are slow to translate to clinical interventions, leading to poorer patient outcomes and unnecessary deaths. One reason is that clinicians, overwhelmed by patients, struggle to keep pace with the rate of new coronavirus literature. A potential solution is developing a tool for evaluating coronavirus literature using large language models (LLMs) – neural networks that are deployed for natural language processing. LLMs can be used to summarize and extract user-specified information. The greater availability and advancement of LLMs and pre- processed coronavirus literature databases provide the opportunity to assist clinicians in evaluating coronavirus literature through a coronavirus literature specific LLM (covLLM), a tool that directly takes an inputted research article and a user query to return an answer. Using the COVID-19 Open Research Dataset (CORD-19), we produced two datasets: (1) synCovid, which uses a combination of handwritten prompts and synthetic prompts generated using OpenAI, and (2) real abstracts, which contains abstract and title pairs. covLLM was trained with LLaMA 7B as a baseline model to produce three models trained on (1) the Alpaca and synCovid datasets, (2) the synCovid dataset, and (3) the synCovid and real abstract datasets. These models were evaluated by two human evaluators and ChatGPT. Results demonstrate that training covLLM on the synCovid and abstract pairs datasets performs competitively with ChatGPT and outperforms covLLM trained primarily using the Alpaca dataset.

Read more click here